Сравнение двух средних нормальных генеральных совокупностей, дисперсии которых известны (независимые выборки)
Пусть генеральные совокупности Х и Y распределены нормально, причем их дисперсии известны (например, из предшествующего опыта или найдены теоретически). По независимым выборкам, объемы которых соответственно равны n и m, извлеченным из этих совокупностей, найдены выборочные средние и .
Требуется по выборочным средним при заданном уровне значимости проверить нулевую гипотезу, состоящую в том, что генеральные средние (математические ожидания) рассматриваемых совокупностей равны между собой, т. е. .
Учитывая, что выборочные средние являются несмещенными оценками генеральных средних, нулевую гипотезу можно записать так: .
Таким образом, требуется проверить, что математические ожидания выборочных средних равны между собой. Такая задача ставится потому, что, как правило, выборочные средние оказываются различными. Возникает вопрос: значимо или незначимо различаются выборочные средние? Если окажется, что нулевая гипотеза справедлива, т. е. генеральные средние одинаковы, то различие выборочных средних незначимо и объясняется случайными причинами и, в частности, случайным отбором объектов выборки.
Например, если физические величины имеют одинаковые истинные размеры, а средние арифметические результатов измерений этих величин различны, то это различие незначимое.
Если нулевая гипотеза отвергнута, т. е. генеральные средние неодинаковы, то различие выборочных средних значимо и не может быть объяснено случайными причинами, а объясняется тем, что сами генеральные средние (математические ожидания) различны.
В качестве критерия проверки Нулевой гипотезы примем случайную величину
.
Эта величина случайная, потому что в различных опытах х и y принимают различные, наперед неизвестные значения. Критерий Z – нормированная нормальная случайная величина, так как является линейной комбинацией нормально распределенных величин X и Y; сами эти величины распределены нормально как выборочные средние, найденные по выборкам, извлеченным из нормальных генеральных совокупностей.
Критическая область строится в зависимости от вида конкурирующей гипотезы.
Первый случай. Нулевая гипотеза . Конкурирующая гипотеза .
В, этом случае строят двустороннюю критическую область, исходя из требования, чтобы вероятность попадания критерия в эту область в предположении справедливости нулевой гипотезы была равна принятому уровню значимости .
Наибольшая мощность критерия (вероятность попадания критерия в критическую область при справедливости конкурирующей гипотезы) достигается тогда, когда, “левая” и “правая” критические точки выбраны так, что вероятность попадания критерия в каждый из двух интервалов критической области равна :
Поскольку Z – нормированная нормальная величина, а распределение такой величины симметрично относительно нуля, критические точки симметричны относительно нуля. Таким образом, если обозначить правую границу двусторонней критической области через , то левая граница равна .
Для нахождения используют функцией Лапласа . Известно, что функция Лапласа определяет вероятность попадания нормированной нормальной случайной величины, например Z, в интервал (0; z).
Так как распределение Z симметрично относительно нуля, то вероятность попадания Z в интервал равна 1/2. Следовательно, если разбить этот интервал точкой на интервалы и , то, и .
Отсюда заключаем: для того чтобы найти правую границу двусторонней критической области, достаточно найти значение аргумента функции Лапласа, которому соответствует значение функции, равное . Тогда двусторонняя критическая область определяется неравенством , а область принятия нулевой гипотезы неравенством .
Обозначим значение критерия, вычисленное поданным наблюдений, через и сформулируем правило проверки нулевой гипотезы.
Правило 1, Для того чтобы при заданном уровне значимости проверить нулевую гипотезу о равенстве математических ожиданий двух нормальных генеральных совокупностей с известными дисперсиями при конкурирующей гипотезе , надо вычислить наблюденное значение критерия и по таблице функции Лапласа найти критическую точку по равенству . Если – нет оснований отвергнуть нулевую гипотезу.
Второй случай. Нулевая гипотеза . Конкурирующая гипотеза .
На практике такой случай имеет место, если профессиональные соображения позволяют предположить, что генеральная средняя одной совокупности больше генеральной средней другой. В этом случае строят правостороннюю критическую область, исходя из требования, чтобы вероятность попадания критерия в эту область в предположении справедливости нулевой гипотезы была равна принятому уровню значимости. В этом случае, для того чтобы найти границу правосторонней критической области , достаточно найти значение аргумента функции Лапласа, которому соответствует значение функции, равное . Тогда правосторонняя критическая область определяется неравенством , а область принятия нулевой гипотезы – неравенством .
Правило 2. Для того чтобы при заданном уровне значимости а проверить нулевую гипотезу о равенстве математических ожиданий двух нормальных генеральных совокупностей с известными дисперсиями при конкурирующей гипотезе , надо вычислить наблюдавшееся значение критерия – и по таблице функции Лапласа найти критическую точку из равенства .
Если – нет оснований отвергнуть нулевую гипотезу. Если – нулевую гипотезу отвергают.
Третий случай. Нулевая гипотеза . Конкурирующая гипотеза .
В этом случае, задача сводится ко второму случаю. Для этого достаточно поменять местами случайные величины и .
- Основные понятия, используемые в математической обработке психологических данных Признаки и переменные
- Шкалы измерения
- Математическая статистика. Первоначальные понятия математической статистики
- Измерение значений психологических признаков
- Разные виды случайных выборок
- Статистическое распределение выборки.
- Типы выборки
- Эмпирическая функция распределения.
- Гистограмма
- Статистические оценки параметров распределения.
- Групповая и общая средние
- Групповая, внутри групповая, межгрупповая и общая дисперсии
- Интервальные оценки.
- Доверительные интервалы для оценки среднеквадратического отклонения нормального распределения
- Характеристики вариационного ряда
- Обычные, начальные и центральные эмпирические моменты
- Эмпирические и выравнивающие (теоретические) частоты
- Асимметрия и эксцесс
- Метод моментов.
- Метод наибольшего правдоподобия.
- Элементы теории линейной корреляции.
- Статистическая проверка гипотез о виде и о параметрах распределений.
- Статистический критерий проверки нулевой гипотезы
- Критерий Пирсона проверки гипотезы о нормальном распределении генеральной совокупности
- Сравнение двух дисперсий нормальных генеральных совокупностей
- Сравнение исправленной выборочной дисперсии с гипотетической генеральной дисперсией нормальной совокупности
- Сравнение двух средних нормальных генеральных совокупностей, дисперсии которых известны (независимые выборки)
- Сравнение двух средних произвольно распределенных генеральных совокупностей (большие независимые выборки)
- Сравнение двух средних нормальных генеральных совокупностей, дисперсии которых неизвестны и одинаковы (малые независимые выборки)
- Сравнение выборочной средней с гипотетической генеральной средней нормальной совокупности
- Связь между двусторонней критической областью и доверительным интервалом
- Определение минимального объема выборки при сравнении выборочной и гипотетической генеральной средних
- Сравнение двух средних нормальных генеральных совокупностей с неизвестными дисперсиями (зависимые выборки)
- Сравнение наблюдаемой относительной частоты с гипотетической вероятностью появления события
- Сравнение двух вероятностей биномиальных распределений
- Сравнение нескольких дисперсий нормальных генеральных совокупностей по выборкам различного объема. Критерий Бартлетта
- Сравнение нескольких дисперсий нормальных генеральных совокупностей по выборкам одинакового объема. Критерий Кочрена
- Проверка гипотезы о значимости выборочного коэффициента корреляции
- Выборочный коэффициент ранговой корреляции Спирмена и проверка гипотезы о его значимости
- Выборочный коэффициент ранговой корреляции Кендалла и проверка гипотезы о его значимости
- Критерий Вилкоксона и проверка гипотезы об однородности двух выборок
- Однофакторный дисперсионный анализ Сравнение нескольких средних. Понятие о дисперсионном анализе
- Общая факторная и остаточная суммы квадратов отклонений
- Общая, факторная и остаточная дисперсии
- Сравнение нескольких средних методом дисперсионного анализа
- Критические точки распределения
- Критические точки распределения Стьюдента
- Критические точки распределения f Фишера — Снедекора
- Критические точки распределения Кочрена
- Критические точки распределения Кочрена (продолжение)
- Критические точки критерия Вилкоксона
- Критические точки критерия Вилкоксона (продолжение)
- Критические точки критерия Вилкоксона (продолжение)