Сравнение двух дисперсий нормальных генеральных совокупностей
На практике задача сравнения дисперсий возникает, если требуется сравнить точность приборов, инструментов, самих методов измерений и т. д. Очевидно, предпочтительнее тот прибор, инструмент и метод, который обеспечивает наименьшее рассеяние результатов измерений, т. е. наименьшую дисперсию.
Пусть генеральные совокупности Х и Y распределены нормально. По независимым выборкам с объемами, соответственно равными и , извлеченным из этих совокупностей, найдены исправленные выборочные дисперсии и . Требуется по исправленным дисперсиям при заданном уровне значимости проверить нулевую гипотезу, состоящую в том, что генеральные дисперсии рассматриваемых совокупностей равны между собой:
.
Учитывая, что исправленные дисперсии являются несмещенными оценками генеральных дисперсий, т. е. , нулевую гипотезу можно записать так:
.
Таким образом, требуется проверить, что математические ожидания исправленных выборочных дисперсий равны между собой. Такая задача ставится потому, что обычно исправленные дисперсии оказываются различными.
Возникает вопрос: значимо (существенно) или незначимо различаются исправленные дисперсии?
Если окажется, что нулевая гипотеза справедлива, т. е. генеральные дисперсии одинаковы, то различие исправленных дисперсий незначимо и объясняется случайными причинами, в частности случайным отбором объектов выборки. Например, если различие исправленных выборочных дисперсий результатов измерений, выполненных двумя приборами, оказалось незначимым, то приборы имеют одинаковую точность.
Если нулевая гипотеза отвергнута, т. е. генеральные дисперсии неодинаковы, то различие исправленных дисперсий значимо и не может быть объяснено случайными причинами, а является следствием того, что сами генеральные дисперсии различны.
В качестве критерия проверки нулевой гипотезы о равенстве генеральных дисперсий примем отношение большей исправленной дисперсии к меньшей, т, е. случайную величину .
Величина F при условии справедливости нулевой гипотезы имеет распределение Фишера — Снедекора со степенями свободы и , где – объем выборки, по которой вычислена большая исправленная дисперсия, – объем выборки, по которой найдена меньшая дисперсия.
Критическая область строится в зависимости от вида конкурирующей гипотезы.
Первый случай. Нулевая гипотеза . Конкурирующая гипотеза . В этом случае строят одностороннюю, а именно правостороннюю, критическую область, исходя из требования, чтобы вероятность попадания критерия F в эту область в предположении справедливости нулевой гипотезы была равна принятому уровню значимости. Критическую точку находят по таблице критических точек распределения Фишера—Снедекора.
Обозначим отношение большей исправленной дисперсии к меньшей, вычисленное по данным наблюдений, через и сформулируем правило проверки нулевой гипотезы.
Правило 1. Для того чтобы при заданном уровне значимости проверить нулевую гипотезу о равенстве генеральных дисперсий нормальных совокупиостей при конкурирующей гипотезе , надо вычислить отношение большей исправленной дисперсии к меньшей, т. е. и по таблице критических точек распределения Фишера–Снедекора, по заданному уровню значимости и числам степеней свободы и ( – число степеней свободы большей исправленной дисперсии) найти критическую точку .
Если – нет оснований отвергнуть нулевую гипотезу. Если нулевую гипотезу отвергают.
Второй случай. Нулевая гипотеза . Конкурирующая гипотеза . В этом случае строят двустороннюю критическую область, исходя из требования, чтобы вероятность попадания критерия в эту область в предположении справедливости нулевой гипотезы была равна принятому уровню значимости . Наибольшая мощность (вероятность попадания критерия в критическую область при справедливости конкурирующей гипотезы) достигается тогда, когда вероятность попадания критерия в каждый из двух интервалов критической области равна /2.
При этом достаточно найти правую критическую точку при уровне значимости, вдвое меньшем заданного. Тогда не только вероятность попадания критерия в “правую часть” критической области (т. е. правее ,) равна /2, но и вероятность попадания этого критерия в “левую часть” критической области (т. е. левее ) также равна /2. Так как эти события несовместны, то вероятность попадания рассматриваемого критерия во всю двустороннюю критическую область будет равна .
Таким образом, в случае конкурирующей гипотезы достаточно найти критическую точку .
Правило 2. Для того чтобы при заданном уровне значимости проверить нулевую гипотезу о равенстве генеральных дисперсий нормально распределенных совокупностей при конкурирующей гипотезе , надо вычислить отношение большей исправленной дисперсии к меньшей, т. е. и по таблице критических точек распределения Фишера—Снедекора по уровню значимости /2 (вдвое меньшем заданного) и числам степеней свободы и ( – число степеней свободы большей дисперсии) найти критическую точку .
Если – нет оснований отвергнуть нулевую гипотезу. Если – нулевую гипотезу отвергают.
- Основные понятия, используемые в математической обработке психологических данных Признаки и переменные
- Шкалы измерения
- Математическая статистика. Первоначальные понятия математической статистики
- Измерение значений психологических признаков
- Разные виды случайных выборок
- Статистическое распределение выборки.
- Типы выборки
- Эмпирическая функция распределения.
- Гистограмма
- Статистические оценки параметров распределения.
- Групповая и общая средние
- Групповая, внутри групповая, межгрупповая и общая дисперсии
- Интервальные оценки.
- Доверительные интервалы для оценки среднеквадратического отклонения нормального распределения
- Характеристики вариационного ряда
- Обычные, начальные и центральные эмпирические моменты
- Эмпирические и выравнивающие (теоретические) частоты
- Асимметрия и эксцесс
- Метод моментов.
- Метод наибольшего правдоподобия.
- Элементы теории линейной корреляции.
- Статистическая проверка гипотез о виде и о параметрах распределений.
- Статистический критерий проверки нулевой гипотезы
- Критерий Пирсона проверки гипотезы о нормальном распределении генеральной совокупности
- Сравнение двух дисперсий нормальных генеральных совокупностей
- Сравнение исправленной выборочной дисперсии с гипотетической генеральной дисперсией нормальной совокупности
- Сравнение двух средних нормальных генеральных совокупностей, дисперсии которых известны (независимые выборки)
- Сравнение двух средних произвольно распределенных генеральных совокупностей (большие независимые выборки)
- Сравнение двух средних нормальных генеральных совокупностей, дисперсии которых неизвестны и одинаковы (малые независимые выборки)
- Сравнение выборочной средней с гипотетической генеральной средней нормальной совокупности
- Связь между двусторонней критической областью и доверительным интервалом
- Определение минимального объема выборки при сравнении выборочной и гипотетической генеральной средних
- Сравнение двух средних нормальных генеральных совокупностей с неизвестными дисперсиями (зависимые выборки)
- Сравнение наблюдаемой относительной частоты с гипотетической вероятностью появления события
- Сравнение двух вероятностей биномиальных распределений
- Сравнение нескольких дисперсий нормальных генеральных совокупностей по выборкам различного объема. Критерий Бартлетта
- Сравнение нескольких дисперсий нормальных генеральных совокупностей по выборкам одинакового объема. Критерий Кочрена
- Проверка гипотезы о значимости выборочного коэффициента корреляции
- Выборочный коэффициент ранговой корреляции Спирмена и проверка гипотезы о его значимости
- Выборочный коэффициент ранговой корреляции Кендалла и проверка гипотезы о его значимости
- Критерий Вилкоксона и проверка гипотезы об однородности двух выборок
- Однофакторный дисперсионный анализ Сравнение нескольких средних. Понятие о дисперсионном анализе
- Общая факторная и остаточная суммы квадратов отклонений
- Общая, факторная и остаточная дисперсии
- Сравнение нескольких средних методом дисперсионного анализа
- Критические точки распределения
- Критические точки распределения Стьюдента
- Критические точки распределения f Фишера — Снедекора
- Критические точки распределения Кочрена
- Критические точки распределения Кочрена (продолжение)
- Критические точки критерия Вилкоксона
- Критические точки критерия Вилкоксона (продолжение)
- Критические точки критерия Вилкоксона (продолжение)