Верхние и нижние цены в s-игре
Дальше будем обозначать S-игру через . Для перехода от игры к S-игре вместо пространства смешанных стратегий второго игрока необходимо использовать пространство S-стратегий, т.е. выпуклую оболочку . Обозначим потери второго игрока в S-игре через , тогда S — игра зависит от P, и , причем потери должны быть найдены как скалярное произведение . Таким образом, выражение определяет S-игру. Функция потерь определяется выражением:
.
Рассмотрим процедуру оценки верхних и нижних цен в S-игре. Если первый игрок применяет смешанную стратегию , то значение его гарантированного выигрыша
.
Обозначим через такую стратегию первого игрока, при которой достигает максимума:
(эта нижняя цена игры совпадает с ценой игры в обычной форме в силу эквивалентности S-игры с обычной игрой). Стратегию называют максиминной стратегией первого игрока.
Предположим теперь, что второй игрок применяет некоторую стратегию . При этом значение его проигрыша . Тогда второго игрока будет интересовать стратегия:
. Стратегию называют минимаксной стратегией второго игрока.
Таким образом, максиминная стратегия первого игрока определяет нижнюю цену в S-игре:
.
Аналогично стратегия определяет верхнюю цену в S-игре:
.
Выражения для и можно представить в более удобном виде, если воспользоваться теоремой.
Теорема. Если S — произвольная точка m-мерного пространства и — многомерная переменная, то имеет место соотношение
.
Доказательство. Пусть . Рассмотрим частное значение p, соответствующее случаю
при и при . В этом случае . Таким образом, является частным значением скалярного произведения , а значит, подмножеством множества значений , получающихся при всевозможных значениях p. На основании теоремы о верхней границе подмножества находим
.
С другой стороны, заменяя в выражении для значения на максимальное значение , получаем
.
Это выражение справедливо при любом p. Сопоставляя два последних выражения приходим к соотношению:
. Теорема доказана.
Если воспользоваться доказанной теоремой, то выражение для B(S) можно переписать в виде
.
Из этого равенства вытекают два следствия:
, т.е. любая точка имеет по крайней мере одну координату, не меньшую, чем верхняя цена игры;
Если в качестве S взять , то получим:
. Верхняя цена игры равна максимальной из координат точки , определяющей минимаксную стратегию второго игрока.
- Основные понятия теории игр
- Классификация игр
- Описание игры в развернутой форме
- Бескоалиционные игры
- Приемлемые ситуации и ситуации равновесия в игре
- Стратегическая эквивалентность игр
- Антагонистические игры. Общие сведения
- Чистые и смешанные стратегии
- Верхняя и нижняя цены игры при использовании смешанных стратегий
- Основная теорема антагонистических игр.
- Верхние и нижние цены в s-игре
- Разделительная и опорная гиперплоскость двух выпуклых множеств
- Теорема о минимаксе
- Геометрическая интерпретация минимакса
- Решение антагонистических игр. Доминирующие и полезные стратегии
- Игры с частными случаями платежных матриц
- Решение матричных игр
- Линейное программирование для решения матричных игр
- Графическое решение игр 2*n и m*2
- Бесконечные антагонистические игры
- Строго выпуклые игры на единичном квадрате
- Неантагонистические игры
- Бескоалиционные игры
- Охрана воздушного бассейна от загрязнений атмосферы
- Принципы оптимальности в бескоалиционных играх
- Принцип оптимальности по Парето
- Смешанное расширение бескоалиционной игры
- Коалиционные и кооперативные игры
- Характеристическая функция коалиционной игры
- Свойства характеристической функции
- Дележи в кооперативной игре
- Стратегическая эквивалентность кооперативных игр
- Общие сведения об играх с природой или теория статистических решений.
- Пространство стратегий природы
- Пространство стратегий статистика и функция выигрыша
- Критерии выбора решений при неопределённости
- Статистические игры без эксперимента. Представление игры с природой в виде s-игры
- Допустимые стратегии в статистических играх
- Геометрическая интерпретация выбора байесовской стратегии
- Статистические игры с проведением единичного эксперимента Общие сведения
- Пространство выборок
- Функции риска
- Принцип выбора стратегий в играх с единичным экспериментом.
- Байесовский принцип.
- Число чистых стратегий статистика в игре с единичным экспериментом.
- Апостериорные распределения вероятности.
- Определение байесовских решений с использованием апостериорных вероятностей
- Двуальтернативная задача
- Анализ целесообразности проведения экспериментов
- Использование апостериорной вероятности для определения последовательных байесовских правил
- Правило последовательных выборок
- Функция риска при оптимальном последовательном правиле