Принцип оптимальности по Парето
При анализе игры по Парето рассматривается множество Н, составленное из всех выигрышей Hi(x), где x (x1 x2…xN) — множество всех ситуаций, которые могут возникнуть в игре. Можно также рассмотреть выигрыш всех игроков в ситуации х: H(x)= (H1(x),…,HN(x)). Очевидно, что среди множества ситуаций х найдется такая ситуация , при которой для всех Hi(x) Hi( ).
В общем случае таких ситуаций может быть несколько. Множество таких ситуаций будет образовывать множество ситуаций равновесия по Парето: xp=( ). Кроме этих ситуаций не существует других ситуаций, которые были бы предпочтительнее одновременно для всех игроков.
В ситуации равновесия по Нэшу каждый игрок, действуя самостоятельно, не может увеличить свой выигрыш, а в ситуации оптимальности по Парето все игроки, действуя сообща, не могут одновременно увеличить свой выигрыш.
Для решения бескоалиционных игр приходится рассматривать их смешанные расширения.
- Основные понятия теории игр
- Классификация игр
- Описание игры в развернутой форме
- Бескоалиционные игры
- Приемлемые ситуации и ситуации равновесия в игре
- Стратегическая эквивалентность игр
- Антагонистические игры. Общие сведения
- Чистые и смешанные стратегии
- Верхняя и нижняя цены игры при использовании смешанных стратегий
- Основная теорема антагонистических игр.
- Верхние и нижние цены в s-игре
- Разделительная и опорная гиперплоскость двух выпуклых множеств
- Теорема о минимаксе
- Геометрическая интерпретация минимакса
- Решение антагонистических игр. Доминирующие и полезные стратегии
- Игры с частными случаями платежных матриц
- Решение матричных игр
- Линейное программирование для решения матричных игр
- Графическое решение игр 2*n и m*2
- Бесконечные антагонистические игры
- Строго выпуклые игры на единичном квадрате
- Неантагонистические игры
- Бескоалиционные игры
- Охрана воздушного бассейна от загрязнений атмосферы
- Принципы оптимальности в бескоалиционных играх
- Принцип оптимальности по Парето
- Смешанное расширение бескоалиционной игры
- Коалиционные и кооперативные игры
- Характеристическая функция коалиционной игры
- Свойства характеристической функции
- Дележи в кооперативной игре
- Стратегическая эквивалентность кооперативных игр
- Общие сведения об играх с природой или теория статистических решений.
- Пространство стратегий природы
- Пространство стратегий статистика и функция выигрыша
- Критерии выбора решений при неопределённости
- Статистические игры без эксперимента. Представление игры с природой в виде s-игры
- Допустимые стратегии в статистических играх
- Геометрическая интерпретация выбора байесовской стратегии
- Статистические игры с проведением единичного эксперимента Общие сведения
- Пространство выборок
- Функции риска
- Принцип выбора стратегий в играх с единичным экспериментом.
- Байесовский принцип.
- Число чистых стратегий статистика в игре с единичным экспериментом.
- Апостериорные распределения вероятности.
- Определение байесовских решений с использованием апостериорных вероятностей
- Двуальтернативная задача
- Анализ целесообразности проведения экспериментов
- Использование апостериорной вероятности для определения последовательных байесовских правил
- Правило последовательных выборок
- Функция риска при оптимальном последовательном правиле