Стратегическая эквивалентность игр
Разнообразие бескоалиционных игр требует их объединения в классы эквивалентности. Каждый из классов можно исследовать на примере игры с простой структурой. Стратегическая эквивалентность является обоснованием для объединения игр в один класс, а это означает, что игры, объединенные в один класс, считаются стратегически эквивалентными.
Опр.: Пусть имеется две игры и . Тогда эти игры называются стратегически эквивалентными, если , при котором выполняется следующее условие:
Обычно условие стратегической эквивалентности записывают следующим образом: .
Стратегическая эквивалентность обладает следующими свойствами:
рефлексивность ;
симметрия и ;
Док-во:
,
Стратегическая эквивалентность позволяет разбить все множество бескоалиционных игр на попарно непересекающиеся классы:
Различия в стратегически эквивалентных играх заключаются в масштабах выигрыша и в начальном капитале . Стратегия в каждой из этих игр заключается в максимизации своего выигрыша, причем этот выигрыш максимизируется на одинаковых стратегиях.
Теорема: стратегически эквивалентные игры имеют одни и те же ситуации равновесия.
Доказательство:
Пусть имеется две стратегически эквивалентные игры: . Это значит, что в ситуации равновесия должно выполняться условие:
,
Очевидно, меняя ситуацию равновесия на другую ситуацию равновесия , получим:
.
Так как — ситуация равновесия, то для игры должно выполнятся условие:
, но из этого неравенства следует, что , а это условие означает, что ситуация есть ситуация равновесия для двух игр и , то есть две стратегически эквивалентные игры имеют одну и туже ситуацию равновесия . Теорема доказана.
Теорема: всякая бескоалиционная игра с постоянной суммой стратегически эквивалентна некоторой бескоалиционной игре с нулевой суммой.
Доказательство:
Рассмотрим бескоалиционную игру с постоянной суммой:
, , .
Возьмем такие произвольные вещественные числа , , чтобы . Рассмотрим функцию выигрыша . Это есть условие стратегической эквивалентности игр и (т.к. k=1, а не зависит от S). Тогда выигрыш игры Г равен . То есть игра Г является игрой с нулевой суммой. Теорема доказана.
Таким образом, мы доказали, что игры с постоянной суммой всегда можно привести к играм с нулевой суммой.
- Основные понятия теории игр
- Классификация игр
- Описание игры в развернутой форме
- Бескоалиционные игры
- Приемлемые ситуации и ситуации равновесия в игре
- Стратегическая эквивалентность игр
- Антагонистические игры. Общие сведения
- Чистые и смешанные стратегии
- Верхняя и нижняя цены игры при использовании смешанных стратегий
- Основная теорема антагонистических игр.
- Верхние и нижние цены в s-игре
- Разделительная и опорная гиперплоскость двух выпуклых множеств
- Теорема о минимаксе
- Геометрическая интерпретация минимакса
- Решение антагонистических игр. Доминирующие и полезные стратегии
- Игры с частными случаями платежных матриц
- Решение матричных игр
- Линейное программирование для решения матричных игр
- Графическое решение игр 2*n и m*2
- Бесконечные антагонистические игры
- Строго выпуклые игры на единичном квадрате
- Неантагонистические игры
- Бескоалиционные игры
- Охрана воздушного бассейна от загрязнений атмосферы
- Принципы оптимальности в бескоалиционных играх
- Принцип оптимальности по Парето
- Смешанное расширение бескоалиционной игры
- Коалиционные и кооперативные игры
- Характеристическая функция коалиционной игры
- Свойства характеристической функции
- Дележи в кооперативной игре
- Стратегическая эквивалентность кооперативных игр
- Общие сведения об играх с природой или теория статистических решений.
- Пространство стратегий природы
- Пространство стратегий статистика и функция выигрыша
- Критерии выбора решений при неопределённости
- Статистические игры без эксперимента. Представление игры с природой в виде s-игры
- Допустимые стратегии в статистических играх
- Геометрическая интерпретация выбора байесовской стратегии
- Статистические игры с проведением единичного эксперимента Общие сведения
- Пространство выборок
- Функции риска
- Принцип выбора стратегий в играх с единичным экспериментом.
- Байесовский принцип.
- Число чистых стратегий статистика в игре с единичным экспериментом.
- Апостериорные распределения вероятности.
- Определение байесовских решений с использованием апостериорных вероятностей
- Двуальтернативная задача
- Анализ целесообразности проведения экспериментов
- Использование апостериорной вероятности для определения последовательных байесовских правил
- Правило последовательных выборок
- Функция риска при оптимальном последовательном правиле