Теорема о минимаксе
Возможность нахождения каждым игроком своей наилучшей стратегии основывается на следующей теореме, которая может рассматриваться как доказательство существования решения для конечных игр.
Теорема. Всякая конечная антагонистическая игра имеет цену, и у каждого игрока существует по меньшей мере одна оптимальная стратегия.
Исходные предпосылки. Пусть — конечная игра, а — смешанное расширение этой игры. При доказательстве теоремы удобно вести рассуждения в терминах S-игры, поэтому через обозначим эквивалентную S-игру.
Нижняя и верхняя цены S-игры будут равны и соответственно, независимо от того, рассматривают игру G или эквивалентную ей S-игру , причем .
Для того, чтобы доказать теорему, достаточно показать, что , так как из сравнения с предыдущим неравенством будет следовать , т.е. что игра имеет цену.
Для доказательства этого неравенства достаточно найти такую смешанную стратегию первого игрока, при которой для всех имеет место
. (1)
Действительно, если неравенство (1) имеет место, то
. Таким образом, доказательство теоремы будет сводиться к доказательству неравенства (1).
Доказательство. Рассмотрим множество T, состоящее из точек таких, что . На рисунке показана область T для двумерного пространства, которая в данном случае имеет вид прямоугольного клина с вершиной, лежащей на прямой, проведенной из начала координат под углом к оси абсцисс. Рассмотрим некоторые свойства множества T.
Множество T является выпуклым. Рассмотрим произвольные точки и этого множества. Уравнение отрезка, соединяющего эти две точки, будет иметь вид:
, , .
Проектируя это уравнение на i-ую ось и учитывая теорему на стр.14, получаем
(2) Следовательно, любая точка рассматриваемого отрезка принадлежит T и множество T выпуклое.
Множество T не пересекается с множеством . Это следует из того, что любая точка множества имеет по крайней мере одну координату, большую или равную (следствие 1 из теоремы «Если S — произвольная точка m-мерного пространства и — многомерная переменная, то имеет место соотношение , а значит T и не имеют общих точек.
Поскольку T и — выпуклые непересекающиеся области, то существует разделяющая их гиперплоскость такая, что множества T и окажутся в разных полупространствах, определяемых этой гиперплоскостью. Следовательно, существует такое и число c, что уравнение
(3)
будет уравнением разделяющей гиперплоскости, причем
для ;
для . (4)
Покажем, что . Пусть — точка, у которой i-ая координата равна 1, а остальные равны малой величине . Рассмотрим точку . Так как ее максимальная координата равна (следствие 2 из теоремы «Если S — произвольная точка m-мерного пространства и — многомерная переменная, то имеет место соотношение , то точка . Следовательно,
.
Отсюда следует, что
.
Если , то при и при этом последнее условие дает
. (5)
Введем обозначение
. (6)
Очевидно, что , так как
, .
Кроме того, введем обозначение . (7)
Поделим неравенства (4) на . С учетом (6) и (7) получим
для ;
для . (8)
Рассмотрим точку с координатами , , . Очевидно, что . На основании второго неравенства из (8) получаем
. (9)
Пусть , так что . Тогда
. (10)
Сравнивая (9) и (10), находим (11)
При этом первое из неравенств (8) дает , (12), что и доказывает неравенство (1).
Таким образом, является ценой игры, а и представляют собой оптимальные смешанные стратегии игроков. Теорема доказана.
- Основные понятия теории игр
- Классификация игр
- Описание игры в развернутой форме
- Бескоалиционные игры
- Приемлемые ситуации и ситуации равновесия в игре
- Стратегическая эквивалентность игр
- Антагонистические игры. Общие сведения
- Чистые и смешанные стратегии
- Верхняя и нижняя цены игры при использовании смешанных стратегий
- Основная теорема антагонистических игр.
- Верхние и нижние цены в s-игре
- Разделительная и опорная гиперплоскость двух выпуклых множеств
- Теорема о минимаксе
- Геометрическая интерпретация минимакса
- Решение антагонистических игр. Доминирующие и полезные стратегии
- Игры с частными случаями платежных матриц
- Решение матричных игр
- Линейное программирование для решения матричных игр
- Графическое решение игр 2*n и m*2
- Бесконечные антагонистические игры
- Строго выпуклые игры на единичном квадрате
- Неантагонистические игры
- Бескоалиционные игры
- Охрана воздушного бассейна от загрязнений атмосферы
- Принципы оптимальности в бескоалиционных играх
- Принцип оптимальности по Парето
- Смешанное расширение бескоалиционной игры
- Коалиционные и кооперативные игры
- Характеристическая функция коалиционной игры
- Свойства характеристической функции
- Дележи в кооперативной игре
- Стратегическая эквивалентность кооперативных игр
- Общие сведения об играх с природой или теория статистических решений.
- Пространство стратегий природы
- Пространство стратегий статистика и функция выигрыша
- Критерии выбора решений при неопределённости
- Статистические игры без эксперимента. Представление игры с природой в виде s-игры
- Допустимые стратегии в статистических играх
- Геометрическая интерпретация выбора байесовской стратегии
- Статистические игры с проведением единичного эксперимента Общие сведения
- Пространство выборок
- Функции риска
- Принцип выбора стратегий в играх с единичным экспериментом.
- Байесовский принцип.
- Число чистых стратегий статистика в игре с единичным экспериментом.
- Апостериорные распределения вероятности.
- Определение байесовских решений с использованием апостериорных вероятностей
- Двуальтернативная задача
- Анализ целесообразности проведения экспериментов
- Использование апостериорной вероятности для определения последовательных байесовских правил
- Правило последовательных выборок
- Функция риска при оптимальном последовательном правиле