logo search
Теория игр

Графическое решение игр 2*n и m*2

Рассмотрим игру (2*n) с матрицей

A=

Выигрыш 1-го игрока H(p,yk)=p1a1k + p2a2k = p1a1k + (1-p1)a2k,

На плоскости такая зависимость изображается отрезком прямой, причем при p=0 H(p,yk)=a2k, p=1 H(p,yk)=a1k

Таким образом, получаем семейство из n прямых:

Исходя из условия гарантированного выигрыша, его величина при разных значениях р будет определяться нижней границей множества этих прямых. Очевидно, что оптимальная стратегия соответствует той точке полученного множества, в которой значение функции максимально, а само это максимальное значение есть цена игры.

Рабочими стратегиями 2-ого игрока являются в данном случае 3я и 4я, а значит, оптимальная стратегия 1-ого игрока определяется из системы уравнений:

q3 + q4 = 1

a23q3 + a24q4 = v

Рассмотрим теперь игру (m*2) с матрицей

Эту игру удобно рассматривать для второго игрока. Как и в предыдущем случае, строится семейство из m отрезков прямых, отображающих зависимость величины функции выигрыша 1-го игрока от выбираемой им стратегии:

Н(xi,q)= ai1q + ai2(1-q), ,

Исходя из разумности поведения 1-ого игрока, проигрыш 2-ого определяется верхней огибающей семейства этих прямых. Значения q* и v находятся как абсцисса и ордината нижней вершины огибающей, а затем оптимальная стратегия 1-го игрока определяется исходя из его рабочих стратегий (в данном случае рабочими стратегиями 1-го игрока являются xr и xe), аналогично предыдущему случаю.

Во всех этих случаях число рабочих стратегий обоих игроков одинаково.