1.10. Интегрирующий множитель
Определение. Если уравнение не является уравнением в полных дифференциалах и существует функция такая, что после домножения на неё обеих частей уравнения получающееся дифференциальное уравнение
становится уравнением в полных дифференциалах, то есть , то функцияназываетсяинтегрирующим множителем.
В случае, когда уравнение является уравнением в полных дифференциалах, полагают .
Если найден интегрирующий множитель µ, то интегрирование данного уравнения сводится к умножению обеих его частей на µ и нахождению общего интеграла полученного уравнения в полных дифференциалах.
Если µ есть непрерывно дифференцируемая функция от x и y, то
.
Из последнего тождества следует, что интегрирующий множитель µ удовлетворяет уравнению с частными производными 1-го порядка:
. (10.1)
Если заранее известно, что , где ω – заданная функция отx и y, то уравнение (10.1) сводится к обыкновенному (и притом линейному) уравнению с неизвестной функцией µ от независимой переменной ω:
, (10.2)
где
,
то есть указанная дробь является функцией только переменной ω.
Решая уравнение (10.2), находим интегрирующий множитель
, .
В частности, уравнение имеет интегрирующий множитель, зависящий только от x () или только отy (), если выполнены соответственно следующие условия:
, ,
или
, .
- Конспект лекций по высшей математике. Обыкновенные дифференциальные уравнения.
- Учебное пособие
- Оглавление
- 1. Дифференциальные уравнения 1-го порядка
- 1.1. Обыкновенные дифференциальные уравнения. Основные понятия
- 1.2. Обыкновенные дифференциальные уравнения 1-го порядка
- 1.3. Дифференциальные уравнения 1-го порядка с разделяющимися переменными
- 1.4. Однородные дифференциальные уравнения 1-го порядка
- 1.5. Дифференциальные уравнения, приводящиеся к однородным
- 1.6. Обобщенное однородное уравнение
- 1.7. Линейные дифференциальные уравнения 1-го порядка
- 1.8. Уравнение Бернулли
- 1.9. Дифференциальные уравнения в полных дифференциалах
- 1.10. Интегрирующий множитель
- 2. Дифференциальные уравнения 2-го порядка
- 2.1. Методы понижения порядка уравнения
- 2.2. Линейное дифференциальное уравнение 2-го порядка
- 2.3. Определитель Вронского
- 2.4. Структура общего решения лоду 2-го порядка
- 2.5. Лоду 2-го порядка с постоянными коэффициентами
- 2.6. Структура общего решения линейного неоднородного дифференциального уравнения (лнду) 2-го порядка
- 2.7. Решение лнду 2-го порядка с постоянными коэффициентами со специальной правой частью
- 2.8. Метод вариации произвольных постоянных (метод Лагранжа)
- 3. Линейные уравнения высших порядков
- 3.1. Однородное уравнение
- 3.2. Линейное однородное дифференциальное уравнение с постоянными коэффициентами
- 4. Системы обыкновенных дифференциальных уравнений
- 4.1. Нормальные системы
- 4.2. Метод исключения
- 4.3. Линейные однородные системы дифференциальных уравнений (лос ду)
- 4.4. Лос ду с постоянными коэффициентами
- 4.5. Линейные неоднородные системы дифференциальных уравнений (лнс ду)
- 4.6. Метод вариации произвольных постоянных