1.8. Уравнение Бернулли
Определение. Дифференциальное уравнение вида
,
где ,, называетсяуравнением Бернулли.
Предполагая, что , разделим обе части уравнения Бернулли на.В результате получим:
. (8.1)
Введём новую функцию . Тогда
.
Домножим обе части уравнения (8.1) на и перейдем к функцииz(x):
,
то есть для функции z(x) получили линейное неоднородное уравнение 1-го порядка. Это уравнение решается методами, разобранными в предыдущем пункте 1.7. Подставим в его общее решение вместо z(x) выражение , получим общий интеграл уравнения Бернулли, который легко разрешается относительноy. При добавляется решение. Уравнение Бернулли можно также решать, не делая перехода к линейному уравнению путём подстановки, а применяя метод Бернулли, подробно разобранный в1.7. Рассмотрим применение этого метода для решения уравнения Бернулли на конкретном примере.
Пример. Найти общее решение уравнения:
. (8.2)
Решение. Уравнение (8.2) является уравнением Бернулли, причём .
Будем искать решение уравнения в виде . Тогда
.
В левой части последнего уравнения сгруппируем второе и третье слагаемые, которые содержат функцию u(x), и потребуем, чтобы . Откуда. Тогда для функцииu(x) получим следующее уравнение:
,
то есть
.
Последнее уравнение является уравнением с разделяющимися переменными для функции u(x). Решая его, приходим к:
,
,
.
Следовательно, общее решение данного уравнения (8.2) имеет вид:
.
Yandex.RTB R-A-252273-3- Конспект лекций по высшей математике. Обыкновенные дифференциальные уравнения.
- Учебное пособие
- Оглавление
- 1. Дифференциальные уравнения 1-го порядка
- 1.1. Обыкновенные дифференциальные уравнения. Основные понятия
- 1.2. Обыкновенные дифференциальные уравнения 1-го порядка
- 1.3. Дифференциальные уравнения 1-го порядка с разделяющимися переменными
- 1.4. Однородные дифференциальные уравнения 1-го порядка
- 1.5. Дифференциальные уравнения, приводящиеся к однородным
- 1.6. Обобщенное однородное уравнение
- 1.7. Линейные дифференциальные уравнения 1-го порядка
- 1.8. Уравнение Бернулли
- 1.9. Дифференциальные уравнения в полных дифференциалах
- 1.10. Интегрирующий множитель
- 2. Дифференциальные уравнения 2-го порядка
- 2.1. Методы понижения порядка уравнения
- 2.2. Линейное дифференциальное уравнение 2-го порядка
- 2.3. Определитель Вронского
- 2.4. Структура общего решения лоду 2-го порядка
- 2.5. Лоду 2-го порядка с постоянными коэффициентами
- 2.6. Структура общего решения линейного неоднородного дифференциального уравнения (лнду) 2-го порядка
- 2.7. Решение лнду 2-го порядка с постоянными коэффициентами со специальной правой частью
- 2.8. Метод вариации произвольных постоянных (метод Лагранжа)
- 3. Линейные уравнения высших порядков
- 3.1. Однородное уравнение
- 3.2. Линейное однородное дифференциальное уравнение с постоянными коэффициентами
- 4. Системы обыкновенных дифференциальных уравнений
- 4.1. Нормальные системы
- 4.2. Метод исключения
- 4.3. Линейные однородные системы дифференциальных уравнений (лос ду)
- 4.4. Лос ду с постоянными коэффициентами
- 4.5. Линейные неоднородные системы дифференциальных уравнений (лнс ду)
- 4.6. Метод вариации произвольных постоянных