1.2. Обыкновенные дифференциальные уравнения 1-го порядка
Обыкновенное дифференциальное уравнение 1-го порядка () имеет вид:или (если его удаётся разрешить относительно производной). Общее решение или общий интеграл уравнения 1-го порядка содержат одну произвольную постоянную. Единственное начальное условие для уравнения 1-го порядкапозволяет определить значение константы из общего решения или из общего интеграла. Таким образом можно найти частное решение, то есть задача Коши будет решена. Вопрос о существовании и единственности решения задачи Коши является одним из центральных в общей теории обыкновенных дифференциальных уравнений. Для уравнения 1-го порядка, в частности, справедлива следующая теорема, принимаемая здесь без доказательства.
Теорема. Если в уравнении функцияи её частная производнаянепрерывны в некоторой областиD плоскости XOY и в этой области задана точка , то существует (и притом единственное) решение, удовлетворяющее как уравнению, так и начальному условию.
Геометрически общее решение уравнения 1-го порядка представляет собой семейство кривых на плоскости XOY, не имеющих общих точек и отличающихся друг от друга одним параметром – значением константы C. Эти кривые называются интегральными кривыми для данного уравнения. Интегральные кривые уравнения обладают очевидным геометрическим свойством: в каждой точкетангенс угла наклона касательной к кривой равен значению правой части уравнения в этой точке:. Другими словами, уравнениезадаёт в плоскостиXOY поле направлений касательных к интегральным кривым.
Замечание: Необходимо отметить, что к уравнению приводится уравнениеи так называемое уравнение в симметрической форме.
Yandex.RTB R-A-252273-3- Конспект лекций по высшей математике. Обыкновенные дифференциальные уравнения.
- Учебное пособие
- Оглавление
- 1. Дифференциальные уравнения 1-го порядка
- 1.1. Обыкновенные дифференциальные уравнения. Основные понятия
- 1.2. Обыкновенные дифференциальные уравнения 1-го порядка
- 1.3. Дифференциальные уравнения 1-го порядка с разделяющимися переменными
- 1.4. Однородные дифференциальные уравнения 1-го порядка
- 1.5. Дифференциальные уравнения, приводящиеся к однородным
- 1.6. Обобщенное однородное уравнение
- 1.7. Линейные дифференциальные уравнения 1-го порядка
- 1.8. Уравнение Бернулли
- 1.9. Дифференциальные уравнения в полных дифференциалах
- 1.10. Интегрирующий множитель
- 2. Дифференциальные уравнения 2-го порядка
- 2.1. Методы понижения порядка уравнения
- 2.2. Линейное дифференциальное уравнение 2-го порядка
- 2.3. Определитель Вронского
- 2.4. Структура общего решения лоду 2-го порядка
- 2.5. Лоду 2-го порядка с постоянными коэффициентами
- 2.6. Структура общего решения линейного неоднородного дифференциального уравнения (лнду) 2-го порядка
- 2.7. Решение лнду 2-го порядка с постоянными коэффициентами со специальной правой частью
- 2.8. Метод вариации произвольных постоянных (метод Лагранжа)
- 3. Линейные уравнения высших порядков
- 3.1. Однородное уравнение
- 3.2. Линейное однородное дифференциальное уравнение с постоянными коэффициентами
- 4. Системы обыкновенных дифференциальных уравнений
- 4.1. Нормальные системы
- 4.2. Метод исключения
- 4.3. Линейные однородные системы дифференциальных уравнений (лос ду)
- 4.4. Лос ду с постоянными коэффициентами
- 4.5. Линейные неоднородные системы дифференциальных уравнений (лнс ду)
- 4.6. Метод вариации произвольных постоянных