1.6. Обобщенное однородное уравнение
Определение. Уравнение называетсяобобщённым однородным, если удаётся подобрать такое число k, что левая часть этого уравнения становится однородной функцией некоторой степени m относительно x, y, dx и dy при условии, что x считается величиной первого измерения, y – k-го измерения, dx – нулевого измерения и dy – ()-го измерения.
Например, таковым будет уравнение
. (6.1)
Действительно, при сделанном предположении относительно измерений x, y, dx и dy члены левой части иdy будут иметь соответственно измерения (–2), (2k) и (k–1). Приравнивая эти величины, получаем условие, которому должно удовлетворять искомое число k:
.
Это условие выполняется при (при такомk все члены левой части рассматриваемого уравнения будут иметь измерение (–2)). Следовательно, уравнение (6.1) является обобщённым однородным.
Обобщенное однородное уравнение приводится к уравнению с разделяющимися переменными с помощью подстановки , гдеz – новая неизвестная функция. Проинтегрируем уравнение (6.1) описанным методом. Так как , то, а следовательно уравнение (6.1) примет вид:
.
Решая полученное уравнение путем разделения переменных, находим , откуда. Последнее равенство определяет общее решение уравнения (6.1).
Yandex.RTB R-A-252273-3- Конспект лекций по высшей математике. Обыкновенные дифференциальные уравнения.
- Учебное пособие
- Оглавление
- 1. Дифференциальные уравнения 1-го порядка
- 1.1. Обыкновенные дифференциальные уравнения. Основные понятия
- 1.2. Обыкновенные дифференциальные уравнения 1-го порядка
- 1.3. Дифференциальные уравнения 1-го порядка с разделяющимися переменными
- 1.4. Однородные дифференциальные уравнения 1-го порядка
- 1.5. Дифференциальные уравнения, приводящиеся к однородным
- 1.6. Обобщенное однородное уравнение
- 1.7. Линейные дифференциальные уравнения 1-го порядка
- 1.8. Уравнение Бернулли
- 1.9. Дифференциальные уравнения в полных дифференциалах
- 1.10. Интегрирующий множитель
- 2. Дифференциальные уравнения 2-го порядка
- 2.1. Методы понижения порядка уравнения
- 2.2. Линейное дифференциальное уравнение 2-го порядка
- 2.3. Определитель Вронского
- 2.4. Структура общего решения лоду 2-го порядка
- 2.5. Лоду 2-го порядка с постоянными коэффициентами
- 2.6. Структура общего решения линейного неоднородного дифференциального уравнения (лнду) 2-го порядка
- 2.7. Решение лнду 2-го порядка с постоянными коэффициентами со специальной правой частью
- 2.8. Метод вариации произвольных постоянных (метод Лагранжа)
- 3. Линейные уравнения высших порядков
- 3.1. Однородное уравнение
- 3.2. Линейное однородное дифференциальное уравнение с постоянными коэффициентами
- 4. Системы обыкновенных дифференциальных уравнений
- 4.1. Нормальные системы
- 4.2. Метод исключения
- 4.3. Линейные однородные системы дифференциальных уравнений (лос ду)
- 4.4. Лос ду с постоянными коэффициентами
- 4.5. Линейные неоднородные системы дифференциальных уравнений (лнс ду)
- 4.6. Метод вариации произвольных постоянных