logo
ДУ_сборка__РЕД__НАПЕДЕНИНА

1.7. Линейные дифференциальные уравнения 1-го порядка

Определение. Линейным уравнением 1-го порядка называется уравнение, линейное относительно искомой функции и её производной. Оно имеет вид:

, (7.1)

где и – заданные непрерывные функции от x. Если функция , то уравнение (7.1) имеет вид:

(7.2)

и называется линейным однородным уравнением, в противном случае (≢0) оно называется линейным неоднородным уравнением.

Линейное однородное дифференциальное уравнение (7.2) является уравнением с разделяющимися переменными:

;

;

(7.3)

Выражение (7.3) определяет общее решение уравнения (7.2). Чтобы найти общее решение уравнения (7.1), в котором функция обозначает ту же функцию, что и в уравнении (7.2), воспользуемся так называемымметодом вариации произвольной постоянной, который состоит в следующем: постараемся подобрать функцию так, чтобы общее решение линейного однородного уравнения (7.2) являлось решением неоднородного линейного уравнения (7.1). Тогда производная функции (7.3) примет вид:

.

Подставляя найденную производную в уравнение (7.1), получим:

или

.

Отсюда , где– произвольная постоянная. В результате общее решение неоднородного линейного уравнения (7.1) будет иметь вид:

. (7.4)

Заметим, что первое слагаемое в выражении (7.4) представляет общее решение (7.3) линейного однородного дифференциального уравнения (7.2), а второе слагаемое – частное решение линейного неоднородного уравнения (7.1), полученное из общего (7.4) при . Сформулируем замеченный факт в виде теоремы.

Теорема. Если известно одно частное решение линейного неоднородного дифференциального уравнения , то все остальные решения имеют вид, где– общее решение соответствующего линейного однородного дифференциального уравнения.

Однако надо отметить, что для решения линейного неоднородного дифференциального уравнения 1-го порядка (7.1) чаще применяется другой метод, иногда называемый методом Бернулли. Будем искать решение уравнения (7.1) в виде . Тогда. Подставим найденную производную в исходное уравнение (7.1), получим:

.

Объединим, например, второе и третье слагаемые последнего выражения и вынесем функцию u(x) как общий множитель за скобку:

. (7.5)

Потребуем обращения в нуль круглой скобки: . Решим это уравнение, полагая произвольную постояннуюC равной нулю:

, .

Найденную функцию v(x) подставим в уравнение (7.5), откуда получим:

.

Решая его, приходим к: .

Следовательно, общее решение уравнения (7.1) имеет вид:

.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4