Антагонистические игры. Общие сведения
Опр.: Игра называется антагонистической, если выполняются условия и .
Другими словами, антагонистическая игра — это игра двух лиц с нулевой суммой.
Обозначив множество стратегий первого игрока через X , а множество стратегий второго игрока через Y , антагонистическую игру можно описать следующим образом:
, где — выигрыш первого игрока или проигрыш второго.
Как отмечалось выше, целью исследования является нахождение ситуации равновесия (равновесия в прямом конфликте). Поэтому поведение игроков диктуется:
1-ый игрок старается за счет выбора стратегии максимизировать свой выигрыш ( );
2-ой игрок за счет выбора стратегии старается минимизировать проигрыш ( ).
Суть этого конфликта состоит в том, что каждый из игроков обладает возможностью менять только свою стратегию. Преодоление этой трудности, другими словами определение наиболее рационального способа поведения игроков в этой игре, это и есть игровая модель принятия решений.
Если в антагонистической игре двух лиц множества X и Y конечны, то игра называется матричной. Название объясняется тем, что игру можно представить таким образом: элементы множеств X и Y занумеровываются, например:
и .
Ситуацией в этом случае является пара , , . Выигрыш первого игрока рассматривается как элемент матрицы А размером Эта матрица называется матрицей игры. Игра протекает следующим образом: игроки одновременно и независимо друг от друга называют номер строки (первый игрок) и номер столбца (второй игрок). Элемент матрицы, расположенный на пересечении выбранных строки и столбца, и есть выигрыш первого игрока и соответственно проигрыш второго.
Рассмотрим матричную антагонистическую игру с матрицей выигрышей:
Первый (максимизирующий) игрок выбирает строку. Второй (минимизирующий) игрок выбирает столбец, на их пересечении записан выигрыш первого игрока. Каждый игрок стремится к увеличению своего выигрыша. Но его выигрыш зависит не только от его выбора, но и от того, какая стратегия будет выбрана противником. Поэтому, стремясь получить максимальный выигрыш, каждый игрок должен учитывать поведение противника. В теории игр выбор оптимальной стратегии предлагается осуществлять, основываясь на принципе минимакса (максимина), который иногда называют «принципом осторожной игры против умного партнера».
Вот рассуждения первого игрока, основанные на указанном принципе. «Пусть я выбрал i-ую строку. Тогда самое меньшее, на что я могу рассчитывать, будет . Поэтому естественно выбрать такую строку, чтобы этот минимальный выигрыш был наибольшим: . Таким образом, я могу гарантировать, что меньше, чем , мой выигрыш быть не может».
Эта величина называется нижним значением игры и обозначается:
.
Номер строки i, который выбрал первый игрок, называется максиминной стратегией первого игрока.
Рассуждения второго игрока, основанные на принципе минимакса. «Пусть я выбрал j-ый столбец. Тогда самое большее, что я могу проиграть — это . Поэтому естественно выбрать такой столбец, чтобы этот максимальный проигрыш был наименьшим, т.е. чтобы . Таким образом, я мог бы гарантировать, что меньше, чем , мой выигрыш быть не может».
Величина называется верхним значением игры и обозначается:
.
Значение j называется минимаксной стратегией 2-ого игрока.
Теорема: Если - антагонистическая игра, то для любого , имеет место:
Доказательство:
Так как по определению , то, очевидно, . Так как , то . Эти неравенства очевидны для любых x, y, в том числе и для тех, которые обеспечивают верхнюю и нижнюю цены игры:
.
Таким образом, . Теорема доказана.
Пример. Имеется следующая платежная матрица
A(x)
B(y)
Нижняя цена игры равна -3, верхняя цена игры равна 4, максиминная стратегия первого игрока есть , минимаксная стратегия второго игрока есть .
Если нижняя цена игры равна верхней цене игры, то игра называется игрой с cедловой точкой. Пусть , тогда величину с называют ценой игры, а стратегии игроков, обеспечивающие результат с, — оптимальными стратегиями. Клетку матрицы, определяющую величину с, называют седловой точкой, так как значение с является одновременно минимальным элементом строки и максимальным элементом столбца, на пересечении которых стоит эта величина.
Любая седловая точка является искомой точкой равновесия в игре, так как любое отклонение игроков от оптимальной стратегии приведет к уменьшению выигрыша первого, либо к увеличению проигрыша второго.
— цена игры. Если , то игра является несправедливой, т.к один игрок точно проигрывает. Если , то игра справедливая. Для того чтобы сделать несправедливую игру справедливой, первый игрок должен уплатить второму игроку величину с перед началом каждой новой партии.
- Основные понятия теории игр
- Классификация игр
- Описание игры в развернутой форме
- Бескоалиционные игры
- Приемлемые ситуации и ситуации равновесия в игре
- Стратегическая эквивалентность игр
- Антагонистические игры. Общие сведения
- Чистые и смешанные стратегии
- Верхняя и нижняя цены игры при использовании смешанных стратегий
- Основная теорема антагонистических игр.
- Верхние и нижние цены в s-игре
- Разделительная и опорная гиперплоскость двух выпуклых множеств
- Теорема о минимаксе
- Геометрическая интерпретация минимакса
- Решение антагонистических игр. Доминирующие и полезные стратегии
- Игры с частными случаями платежных матриц
- Решение матричных игр
- Линейное программирование для решения матричных игр
- Графическое решение игр 2*n и m*2
- Бесконечные антагонистические игры
- Строго выпуклые игры на единичном квадрате
- Неантагонистические игры
- Бескоалиционные игры
- Охрана воздушного бассейна от загрязнений атмосферы
- Принципы оптимальности в бескоалиционных играх
- Принцип оптимальности по Парето
- Смешанное расширение бескоалиционной игры
- Коалиционные и кооперативные игры
- Характеристическая функция коалиционной игры
- Свойства характеристической функции
- Дележи в кооперативной игре
- Стратегическая эквивалентность кооперативных игр
- Общие сведения об играх с природой или теория статистических решений.
- Пространство стратегий природы
- Пространство стратегий статистика и функция выигрыша
- Критерии выбора решений при неопределённости
- Статистические игры без эксперимента. Представление игры с природой в виде s-игры
- Допустимые стратегии в статистических играх
- Геометрическая интерпретация выбора байесовской стратегии
- Статистические игры с проведением единичного эксперимента Общие сведения
- Пространство выборок
- Функции риска
- Принцип выбора стратегий в играх с единичным экспериментом.
- Байесовский принцип.
- Число чистых стратегий статистика в игре с единичным экспериментом.
- Апостериорные распределения вероятности.
- Определение байесовских решений с использованием апостериорных вероятностей
- Двуальтернативная задача
- Анализ целесообразности проведения экспериментов
- Использование апостериорной вероятности для определения последовательных байесовских правил
- Правило последовательных выборок
- Функция риска при оптимальном последовательном правиле