Основные типы моделей
Математические модели, используемые в экономике, можно разделить на классы по ряду признаков, относящимся к особенностям моделируемого объекта, цели моделирования и используемого инструментария:
В зависимости от типа моделируемого объекта модели бывают макро и микроэкономические.
Макроэкономические модели описывают экономику как единое целое, связывая между собой ее укрупненные показатели: ВВП, инвестиции, производительность труда, занятость, процентную ставку и др. показатели.
Микроэкономические модели описывают взаимодействие структурных и функциональных составляющих экономики, либо поведение одной такой составляющей в рыночной среде. Вследствие разнообразия типов экономических элементов и форм их взаимодействия на рынке, микроэкономические моделирование занимает основную часть экономико-математической теории.
В зависимости от целей моделирования могут разрабатываться теоретические и прикладные модели.
Теоретические модели позволяют изучать общие свойства экономики и ее характерных элементов. Прикладные модели дают возможность оценить параметры функционирования конкретного экономического объекта и сформулировать рекомендации для принятия практических решений.
В моделировании рыночной экономики особое место занимают равновесные модели, которые описывают состояние экономики, когда результирующая всех сил, стремящихся вывести ее из данного состояния, равна нулю, например модели равновесия спроса и предложения.
Оптимизационные модели в рыночной экономике обычно строятся на микро уровне, например максимизация прибыли или минимизация затрат при фирменном планировании.
В зависимости от используемого инструментария и от характера изучаемых процессов все виды моделирования могут быть разделены на детерминированные и стохастические, дискретные и непрерывные, статические и динамические, линейные и нелинейные.
Детерминированное моделирование отображает детерминированные процессы, т.е. процессы, в которых предполагается отсутствие всяких случайных воздействий.
Стохастическое моделирование отображает вероятностные процессы и события. В этом случае анализируется ряд реализаций случайного процесса, и оцениваются средние характеристики процесса.
Дискретное моделирование служит для описания процессов, которые предполагаются дискретными, т.е. прерывистыми, состоящими из отдельных частей.
Непрерывное моделирование позволяет отобразить непрерывные процессы в системах.
По временному признаку модели могут быть статическими и динамическими. В статических моделях описывается состояние экономического объекта в конкретный момент или период времени, а динамические модели включают взаимосвязи переменных во времени (например, за пятилетний период).
По степени огрубления формы структурных отношений исследуемого объекта модели подразделяются на линейные и нелинейные модели. В линейных моделях все искомые переменные записаны в первой степени, а на графиках они могут быть представлены в виде прямых линий.
В зависимости от формы представления объекта можно выделить мысленное и реальное моделирование.
Мысленное моделирование часто является единственным способом моделирования объектов, которые практически нереализуемы в заданном интервале времени, либо существуют вне условий, возможных для из физического созерцания. Мысленное моделирование может быть реализовано в виде наглядного и математического.
При наглядном моделировании на базе представлений человека о реальных объектах создаются различные наглядные модели, отражающие явления и процессы, протекающие в объекте.
В основу гипотетического моделирования исследователем закладывается некоторая гипотеза о закономерностях протекания процесса в реальном объекте, которая отражает уровень знаний исследователя об объекте и базируется на причинно-следственных связях между входом и выходом изучаемого объекта.
Аналоговое моделирование основывается на применении аналогий различных уровней. Наивысшим уровнем является полная аналогия, имеющая место только для достаточно простых объектов.
Мысленный макет может применяться в тех случаях, когда протекающие в реальном объекте процессы не поддаются физическому моделированию.
Символическое моделирование может быть языковым или знаковым. В основе языкового моделирования лежит некий тезаурус, т.е. словарь, очищенный от неоднозначности, присущей обычному словарю (например, слово "КЛЮЧ").
Знаковое моделирование позволяет с помощью знаков отображать набор понятий, составляя цепочки из слов и предложений и таким образом дать описание реального объекта.
Математическими моделями называют комплекты математических зависимостей, отображающие существенные характеристики изучаемого явления. Во многих случаях математические модели наиболее полно отображают моделируемый объект. В то же время математические модели более динамичны, на них лучше найти оптимальные параметры объекта. Для моделирования экономических явлений другие модели, кроме экономико-математических, как правило, использовать нельзя. Экономико-математические модели, в свою очередь, бывают двух типов: аналитические и имитационные.
Для аналитического моделирования процессы функционирования записываются в виде некоторых функциональных отношений (алгебраических, конечно-разностных и т.д.). При имитационном моделировании имитируются элементарные явления, составляющие процесс с сохранением их логической структуры и последовательности протекания во времени.
Реальное моделирование является наиболее адекватным, но его возможности с учетом сложности объектов очень ограничены.
- Методы моделирования и прогнозирования
- 1. Экономико-математические методы и модели
- Определение модели и цели моделирования
- Последовательность построения экономико-математической модели
- Основные типы моделей
- Классификация экономико-математических методов
- 1.3. Объекты моделирования
- 1.4. Цель, критерий и ограничения в экономико-математических моделях
- Математические модели рынка
- Понятие рыночного равновесия
- Объем предложения
- 2.2. Паутинообразная модель рынка
- Балансовый метод планирования рыночной экономики
- Модель межотраслевого баланса
- 4.5. Модели стохастического программирования
- 3. Производственные функции
- 3.1.Виды производных функций
- 3.2. Пример построения производственной функции
- 3.3. Производственные функции и прогнозирование
- 4.6. Модели оптимального планирования транспортного типа
- 4.8. Производственно-транспортные модели
- 4.9. Транспортные модели с промежуточными пунктами
- Методы решения транспортных задач Метод северо-западного угла
- Метод минимальных элементов
- Метод Фогеля
- 4.11. Модели параметрического программирования
- 5. Матричные игры
- 5.1. Игры двух лиц с нулевой суммой
- 5.2. Верхнее и нижнее значения игры, условие седловой точки
- 5.3. Смешанные стратегии
- Очевидным следствием из Теоремы о минимаксе является соотношение
- 5.4. Игры с ненулевой суммой и кооперативные игры
- 5.5. Введение в теорию игр п лиц
- 5.6. Позиционные игры
- 5.7. Выбор оптимальной стратегии в условиях неопределенности (игры с природой)
- 5.7.2. Критерии выбора оптимальной стратегии
- 5.8. Применение теории матричных игр в управлении
- 6. Имитационное моделирование
- 6.1. Метод Монте-Карло
- 6.2. Моделирование систем массового обслуживания
- 6.2.1. Одноканальная модель с пуассоновским входным потоком с экспоненциальным распределением длительности обслуживания
- 6.2.2. Многоканальная модель с пуассоновским входным потоком и экспоненциальным распределением длительности обслуживания
- 6.3. Моделирование систем массового обслуживания с использованием метода Монте-Карло
- 7. Моделирование потребления
- Функции полезности
- 2. Функция полезности с полным дополнением благ (функция полезности Леонтьева):
- Совершенные товарозаменители.
- Основные виды кривых безразличия
- 2. Выпуклые предпочтения потребителя
- 8. Модели оценки финансового состояния
- 8.1.Виды моделей
- 8.1. Статическая модель и динамическая оценки финансового
- 9.2. Оптимальное планирование портфеля инвестиций
- 9.3 Учет факторов риска при оценке инвестиций
- 9.4. Определение уровня недиверсифицируемого риска методом корреляционно-регрессионного анализа
- Прогнозирование экономических процессов
- 1 Классификация предвидений (прогнозов)
- 2 Принципы организации прогнозирования
- 3. Порядок прогнозирования
- 4.2.Корреляционные методы
- Трендовая модель прогнозирования Понятие временного ряда
- Задачи анализа временного ряда
- Первоначальная подготовка данных
- Задача построения аналитического тренда
- Определение базы построения тренда
- 3.6 Наиболее употребимые виды трендов
- Определение тренда на основе сглаживания ряда
- Механическое сглаживание (пример для понимания)
- Аналитическое сглаживание
- Прогнозирование по тренду
- Прогнозирование на основе регрессионных моделей Понятие регрессии
- Отбор факторов для регрессии
- Вид функции регрессии