5.7.2. Критерии выбора оптимальной стратегии
Рассмотрим игру, заданную платежной матрицей первого игрока (матрица выигрышей первого игрока размера m x n) — .
1. Максиминный критерий Вальда. Это тот самый критерий, который использовался при рассмотрении игр с нулевой суммой (антагонистических) игр. Он отражает «принцип гарантированного результата», то есть мы откладываемся на самый неблагоприятный для нас случай и пытаемся выбрать такую стратегию, которая максимизировала бы наш выигрыш в самой неблагоприятной ситуации. В математическом виде критерий записывается как
В качестве оптимальной выбирается стратегия, на которой достигается значение max. Иногда этот критерий называют критерием «крайнего пессимизма».
2. Критерий максимакса. Этот критерий является в определенном смысле противоположным по своему смыслу предыдущему критерию. А именно, он предполагает рассмотрение не самого неблагоприятного случая (критерий Вальда), а наоборот наиболее благоприятного. Выбирается в качестве оптимальной такая стратегия, для которой этот самый благоприятный случай дает самый большой выигрыш. В математическом виде критерий записывается как
В качестве оптимальной стратегии выбирается стратегия, на которой достигается значение max. Иногда этот критерий называют критерием «крайнего оптимизма».
3. Критерий Гурвица. Этот критерий является своего рода обобщением двух предыдущих критериев. Он представляет из себя целое семейство критериев, зависящих от некоторого параметра α, смысл которого — в определении баланса между подходами «крайнего пессимизма» и «крайнего оптимизма». В математическом виде критерий записывается как
В качестве оптимальной стратегии выбирается стратегия, на которой достигается значение max. Значение параметра выбирается из интервала 0 < α < 1. Критерий Вальда получается как частный случай при α = 0 , а критерий максимакса при α = 1. Выбор конкретного значения параметра определяется скорее субъективными факторами, например склонностью к риску ЛПР (лица принимающего решение). При отсутствии каких-либо явных предпочтений вполне логично, например, выбрать значение α = 0,5.
4. Критерий Сэвиджа (критерий минимаксного риска). Применение данного критерия предполагает рассмотрение некоторой производной матрицы, смысл которой состоит в том, что для каждой стратегии второго игрока определяется выигрыш в наиболее благоприятном случае (при наиболее правильном выборе стратегии первым игроком для данной ситуации), а далее вычисляются величины «недополученных» выигрышей для всех остальных стратегий первого игрока при рассматриваемой стратегии второго игрока. Элементы матрицы , которая обычно называется матрицей риска, рассчитывают как . Далее к матрице рисков применяется минимаксный подход, а именно:
В качестве оптимальной стратегии выбирается стратегия, на которой достигается min. Тем самым выбираем такую стратегию, для которой наибольшее значение «недополучения» будет иметь наименьшее значение.
5. Критерий Лапласа. Этот критерий исходит из следующего соображения. Поскольку нам ничего не известно о принципах или вероятностях применения вторым игроком своих стратегий, то мы предполагаем эти вероятности все равными .
Тогда критерий можно записать как
Таким образом, смысл данного критерия — максимизация ожидаемого выигрыша в предположении о равновероятности применения вторым игроком своих стратегий.
- Методы моделирования и прогнозирования
- 1. Экономико-математические методы и модели
- Определение модели и цели моделирования
- Последовательность построения экономико-математической модели
- Основные типы моделей
- Классификация экономико-математических методов
- 1.3. Объекты моделирования
- 1.4. Цель, критерий и ограничения в экономико-математических моделях
- Математические модели рынка
- Понятие рыночного равновесия
- Объем предложения
- 2.2. Паутинообразная модель рынка
- Балансовый метод планирования рыночной экономики
- Модель межотраслевого баланса
- 4.5. Модели стохастического программирования
- 3. Производственные функции
- 3.1.Виды производных функций
- 3.2. Пример построения производственной функции
- 3.3. Производственные функции и прогнозирование
- 4.6. Модели оптимального планирования транспортного типа
- 4.8. Производственно-транспортные модели
- 4.9. Транспортные модели с промежуточными пунктами
- Методы решения транспортных задач Метод северо-западного угла
- Метод минимальных элементов
- Метод Фогеля
- 4.11. Модели параметрического программирования
- 5. Матричные игры
- 5.1. Игры двух лиц с нулевой суммой
- 5.2. Верхнее и нижнее значения игры, условие седловой точки
- 5.3. Смешанные стратегии
- Очевидным следствием из Теоремы о минимаксе является соотношение
- 5.4. Игры с ненулевой суммой и кооперативные игры
- 5.5. Введение в теорию игр п лиц
- 5.6. Позиционные игры
- 5.7. Выбор оптимальной стратегии в условиях неопределенности (игры с природой)
- 5.7.2. Критерии выбора оптимальной стратегии
- 5.8. Применение теории матричных игр в управлении
- 6. Имитационное моделирование
- 6.1. Метод Монте-Карло
- 6.2. Моделирование систем массового обслуживания
- 6.2.1. Одноканальная модель с пуассоновским входным потоком с экспоненциальным распределением длительности обслуживания
- 6.2.2. Многоканальная модель с пуассоновским входным потоком и экспоненциальным распределением длительности обслуживания
- 6.3. Моделирование систем массового обслуживания с использованием метода Монте-Карло
- 7. Моделирование потребления
- Функции полезности
- 2. Функция полезности с полным дополнением благ (функция полезности Леонтьева):
- Совершенные товарозаменители.
- Основные виды кривых безразличия
- 2. Выпуклые предпочтения потребителя
- 8. Модели оценки финансового состояния
- 8.1.Виды моделей
- 8.1. Статическая модель и динамическая оценки финансового
- 9.2. Оптимальное планирование портфеля инвестиций
- 9.3 Учет факторов риска при оценке инвестиций
- 9.4. Определение уровня недиверсифицируемого риска методом корреляционно-регрессионного анализа
- Прогнозирование экономических процессов
- 1 Классификация предвидений (прогнозов)
- 2 Принципы организации прогнозирования
- 3. Порядок прогнозирования
- 4.2.Корреляционные методы
- Трендовая модель прогнозирования Понятие временного ряда
- Задачи анализа временного ряда
- Первоначальная подготовка данных
- Задача построения аналитического тренда
- Определение базы построения тренда
- 3.6 Наиболее употребимые виды трендов
- Определение тренда на основе сглаживания ряда
- Механическое сглаживание (пример для понимания)
- Аналитическое сглаживание
- Прогнозирование по тренду
- Прогнозирование на основе регрессионных моделей Понятие регрессии
- Отбор факторов для регрессии
- Вид функции регрессии