4.6. Модели оптимального планирования транспортного типа
Если требуется решение вопросов о выборе схемы прикрепления поставщиков и потребителей продукции, используются модели транспортного типа. Классическая транспортная задача заключается в планировании прикрепления поставщиков к потребителям продукции и формулируется следующим образом: однородный продукт, находящийся в m пунктах производства в количестве Р1,Р2,...Рm, требуется доставить в n пунктов потребления. Потребность продукции в этих пунктах равна S1,S2,...Sn.
Экономико-математическая модель задач транспортного типа:
целевая функция - затраты на перевозку продукта должны быть минимальными:
(4.71)
Ограничения.
1. Вся продукция от предприятий поставщиков отправляется потребителям:
(4.72)
2.Все потребители обеспечены продукцией:
(4.73)
3. Мощность поставщиков равна потребности в продукции (условие закрытости):
(4.74)
Модификации транспортной задачи позволяют учитывать особенности различных хозяйственных условий, а именно:
1. Запрет каких-либо перевозок.
Если между поставщиками и потребителями продукции не существует маршрутов (связей) или ими нельзя пользоваться, можно задать стоимость перевозки сij, намного превышающую стоимость остальных перевозок (например, 99999).
2. Ограниченность пропускных способностей коммуникаций.
Это условие учитывается введением ограничений, лимитирующих наибольшее значение объема перевозки по конкретному маршруту:
(4.75)
где dij - пропускная способность транспортной линии.
3. Нарушение условия равенства производства и потребления (открытая транспортная задача).
Если не вся продукция нужна потребителям, т.е. то ограничение на продукцию, отправляемую из пунктов производства, принимает вид:
(4.76)
Транспортная задача сводится к классическому виду путем введения фиктивного потребителя S n+1 с потребностью
(4.77)
В целевой функции должны учитываться затраты, связанные с хранением и с потерей излишней продукции в каждом пункте производства.
Если суммарный объем производства меньше суммарного объема потребления, необходимо учитывать не только транспортные расходы, но и ущерб от недопоставок. В этой задаче
(4.78)
и ограничения на продукцию, поступающую в каждый пункт потребления, будут:
(4.79)
Этот случай также сводится к классической транспортной задаче путем введения фиктивного поставщика с объемом производства
(4.80)
- Методы моделирования и прогнозирования
- 1. Экономико-математические методы и модели
- Определение модели и цели моделирования
- Последовательность построения экономико-математической модели
- Основные типы моделей
- Классификация экономико-математических методов
- 1.3. Объекты моделирования
- 1.4. Цель, критерий и ограничения в экономико-математических моделях
- Математические модели рынка
- Понятие рыночного равновесия
- Объем предложения
- 2.2. Паутинообразная модель рынка
- Балансовый метод планирования рыночной экономики
- Модель межотраслевого баланса
- 4.5. Модели стохастического программирования
- 3. Производственные функции
- 3.1.Виды производных функций
- 3.2. Пример построения производственной функции
- 3.3. Производственные функции и прогнозирование
- 4.6. Модели оптимального планирования транспортного типа
- 4.8. Производственно-транспортные модели
- 4.9. Транспортные модели с промежуточными пунктами
- Методы решения транспортных задач Метод северо-западного угла
- Метод минимальных элементов
- Метод Фогеля
- 4.11. Модели параметрического программирования
- 5. Матричные игры
- 5.1. Игры двух лиц с нулевой суммой
- 5.2. Верхнее и нижнее значения игры, условие седловой точки
- 5.3. Смешанные стратегии
- Очевидным следствием из Теоремы о минимаксе является соотношение
- 5.4. Игры с ненулевой суммой и кооперативные игры
- 5.5. Введение в теорию игр п лиц
- 5.6. Позиционные игры
- 5.7. Выбор оптимальной стратегии в условиях неопределенности (игры с природой)
- 5.7.2. Критерии выбора оптимальной стратегии
- 5.8. Применение теории матричных игр в управлении
- 6. Имитационное моделирование
- 6.1. Метод Монте-Карло
- 6.2. Моделирование систем массового обслуживания
- 6.2.1. Одноканальная модель с пуассоновским входным потоком с экспоненциальным распределением длительности обслуживания
- 6.2.2. Многоканальная модель с пуассоновским входным потоком и экспоненциальным распределением длительности обслуживания
- 6.3. Моделирование систем массового обслуживания с использованием метода Монте-Карло
- 7. Моделирование потребления
- Функции полезности
- 2. Функция полезности с полным дополнением благ (функция полезности Леонтьева):
- Совершенные товарозаменители.
- Основные виды кривых безразличия
- 2. Выпуклые предпочтения потребителя
- 8. Модели оценки финансового состояния
- 8.1.Виды моделей
- 8.1. Статическая модель и динамическая оценки финансового
- 9.2. Оптимальное планирование портфеля инвестиций
- 9.3 Учет факторов риска при оценке инвестиций
- 9.4. Определение уровня недиверсифицируемого риска методом корреляционно-регрессионного анализа
- Прогнозирование экономических процессов
- 1 Классификация предвидений (прогнозов)
- 2 Принципы организации прогнозирования
- 3. Порядок прогнозирования
- 4.2.Корреляционные методы
- Трендовая модель прогнозирования Понятие временного ряда
- Задачи анализа временного ряда
- Первоначальная подготовка данных
- Задача построения аналитического тренда
- Определение базы построения тренда
- 3.6 Наиболее употребимые виды трендов
- Определение тренда на основе сглаживания ряда
- Механическое сглаживание (пример для понимания)
- Аналитическое сглаживание
- Прогнозирование по тренду
- Прогнозирование на основе регрессионных моделей Понятие регрессии
- Отбор факторов для регрессии
- Вид функции регрессии