Отбор факторов для регрессии
Различают содержательный и формальный отбор. С содержательной точки зрения в перечень факторов включаются причины изучаемого явления (напр., причиной выпуска продукции является наличие работников). Однако причина может быть представлена различными видами рядов (напр., наличие работников м.б. описано средней численностью, фондом зарплаты, средним стажем, фондом рабочего времени) и различными формами представления (абсолютные, относительные, приростные значения). Кроме того, влияние причины может запаздывать во времени (напр., увеличение основных фондов сейчас, вызовет прирост производства позднее), что приводит к рассмотрению сдвинутых (на период запаздывания) рядов-факторов.. Т.о., одна причина даёт множество рядов-факторов.
С формальной точки зрения, лучшими факторами являются те, что больше похожи по своим колебаниям на изучаемый ряд, т.е. наиболее коррелирующие с ним. Т.о., из всех рядов-факторов в уравнение регрессии целесообразно включать факторы с наибольшими (по модулю) коэффициентами корреляции [с изучаемым рядом].
Отбор факторов можно начать и с формального способа – оценить корреляцию с изучаемым рядом всех доступных исследователю рядов. Высокая корреляция служит сигналом того, что соответствующее явление может быть ранее неизвестной причиной изучаемого явления.
Регрессия – это математическая функция от ряда содержательных переменных, каждая из которых зависит от времени, и времени:
Если содержательные переменные убрать, получим зависимость только от времени, т.е. тренд. Тренд – регрессия ко времени.
Фактор времени [самого по себе] представляет совокупное влияние всех прочих причин, не нашедших отражение в модели. Если уравнения регрессий с и без фактора времени существенно расходятся – в перечне факторов пропущены существенные (поиск которых – задача содержательного исследования).
- Методы моделирования и прогнозирования
- 1. Экономико-математические методы и модели
- Определение модели и цели моделирования
- Последовательность построения экономико-математической модели
- Основные типы моделей
- Классификация экономико-математических методов
- 1.3. Объекты моделирования
- 1.4. Цель, критерий и ограничения в экономико-математических моделях
- Математические модели рынка
- Понятие рыночного равновесия
- Объем предложения
- 2.2. Паутинообразная модель рынка
- Балансовый метод планирования рыночной экономики
- Модель межотраслевого баланса
- 4.5. Модели стохастического программирования
- 3. Производственные функции
- 3.1.Виды производных функций
- 3.2. Пример построения производственной функции
- 3.3. Производственные функции и прогнозирование
- 4.6. Модели оптимального планирования транспортного типа
- 4.8. Производственно-транспортные модели
- 4.9. Транспортные модели с промежуточными пунктами
- Методы решения транспортных задач Метод северо-западного угла
- Метод минимальных элементов
- Метод Фогеля
- 4.11. Модели параметрического программирования
- 5. Матричные игры
- 5.1. Игры двух лиц с нулевой суммой
- 5.2. Верхнее и нижнее значения игры, условие седловой точки
- 5.3. Смешанные стратегии
- Очевидным следствием из Теоремы о минимаксе является соотношение
- 5.4. Игры с ненулевой суммой и кооперативные игры
- 5.5. Введение в теорию игр п лиц
- 5.6. Позиционные игры
- 5.7. Выбор оптимальной стратегии в условиях неопределенности (игры с природой)
- 5.7.2. Критерии выбора оптимальной стратегии
- 5.8. Применение теории матричных игр в управлении
- 6. Имитационное моделирование
- 6.1. Метод Монте-Карло
- 6.2. Моделирование систем массового обслуживания
- 6.2.1. Одноканальная модель с пуассоновским входным потоком с экспоненциальным распределением длительности обслуживания
- 6.2.2. Многоканальная модель с пуассоновским входным потоком и экспоненциальным распределением длительности обслуживания
- 6.3. Моделирование систем массового обслуживания с использованием метода Монте-Карло
- 7. Моделирование потребления
- Функции полезности
- 2. Функция полезности с полным дополнением благ (функция полезности Леонтьева):
- Совершенные товарозаменители.
- Основные виды кривых безразличия
- 2. Выпуклые предпочтения потребителя
- 8. Модели оценки финансового состояния
- 8.1.Виды моделей
- 8.1. Статическая модель и динамическая оценки финансового
- 9.2. Оптимальное планирование портфеля инвестиций
- 9.3 Учет факторов риска при оценке инвестиций
- 9.4. Определение уровня недиверсифицируемого риска методом корреляционно-регрессионного анализа
- Прогнозирование экономических процессов
- 1 Классификация предвидений (прогнозов)
- 2 Принципы организации прогнозирования
- 3. Порядок прогнозирования
- 4.2.Корреляционные методы
- Трендовая модель прогнозирования Понятие временного ряда
- Задачи анализа временного ряда
- Первоначальная подготовка данных
- Задача построения аналитического тренда
- Определение базы построения тренда
- 3.6 Наиболее употребимые виды трендов
- Определение тренда на основе сглаживания ряда
- Механическое сглаживание (пример для понимания)
- Аналитическое сглаживание
- Прогнозирование по тренду
- Прогнозирование на основе регрессионных моделей Понятие регрессии
- Отбор факторов для регрессии
- Вид функции регрессии