6.2.2. Многоканальная модель с пуассоновским входным потоком и экспоненциальным распределением длительности обслуживания
В подавляющем большинстве случаев на практике системы массового обслуживания являются многоканальными, и, следовательно, модели с п обслуживающими каналами (где п>1) представляют несомненный интерес.
Процесс массового обслуживания, описываемый данной моделью, характеризуется интенсивностью входного потока λ, при этом параллельно может обслуживаться не более п клиентов (заявок).
Средняя продолжительность обслуживания одной заявки равняется 1/μ. Входной и выходной потоки являются пуассоновскими. Режим функционирования того или иного обслуживающего канала не влияет на режим функционирования других обслуживающих каналов системы, причем длительность процедуры обслуживания каждым из каналов является случайной величиной, подчиненной экспоненциальному закону распределения.
Конечная цель использования п параллельно включенных обслуживающих каналов заключается в повышении (по сравнению с одноканальной системой) скорости обслуживания требований за счет обслуживания одновременно п клиентов.
Граф состояний многоканальной системы массового обслуживания с отказами имеет вид, показанный на рис. 6.3.
λ λ λ λ λ λ
μ 2 μ 3 μ k μ (k+1)μ n μ
Рис. 6.3 - Граф состояний многоканальной СМО с отказами
Состояния данной СМО имеют следующую интерпретацию:
S0 — все каналы свободны;
S1 — занят один канал, остальные свободны;
Sk— заняты ровно k каналов, остальные свободны;
Sn — заняты все n каналов, заявка получает отказ в обслуживании.
Формулы для вычисления вероятностей Pk называются формулами Эрланга. Определим вероятностные характеристики функционирования многоканальной СМО с отказами в стационарном режиме:
• вероятность отказа:
(6.24)
так как заявка получает отказ, если приходит в момент, когда все n каналов заняты. Величина Pотк характеризует полноту обслуживания входящего потока;
• вероятность того, что заявка будет принята к обслуживанию (она же — относительная пропускная способность системы q) дополняет Pотк до единицы:
(6.25)
• абсолютная пропускная способность
; (6.26)
• среднее число каналов, занятых обслуживанием () следующее:
. (6.27)
Величина характеризует степень загрузки СМО.
Рассмотрим многоканальную систему массового обслуживания с ожиданием. Процесс массового обслуживания при этом характеризуется следующим: входной и выходной потоки являются пуассоновскими с интенсивностями X и ц соответственно; параллельно обслуживаться могут не более С клиентов. Система имеет С каналов обслуживания. Средняя продолжительность обслуживания одного клиента равна — 1/μ.
Условие стационарности системы: .
Вероятностные характеристики функционирования в стационарном режиме многоканальной СМО с ожиданием и неограниченной очередью определяются по следующим формулам:
• вероятность того, что в системе находится n клиентов на обслуживании, определяется по формулам (6.31);
• среднее число клиентов в очереди на обслуживание
(6.28)
• среднее число находящихся в системе клиентов (заявок на обслуживание в очереди)
LS = Lq + ρ (6.29)
• средняя продолжительность пребывания клиента (заявки на обслуживание) в очереди
(6.30)
• средняя продолжительность пребывания клиента в системе
(6.31)
- Методы моделирования и прогнозирования
- 1. Экономико-математические методы и модели
- Определение модели и цели моделирования
- Последовательность построения экономико-математической модели
- Основные типы моделей
- Классификация экономико-математических методов
- 1.3. Объекты моделирования
- 1.4. Цель, критерий и ограничения в экономико-математических моделях
- Математические модели рынка
- Понятие рыночного равновесия
- Объем предложения
- 2.2. Паутинообразная модель рынка
- Балансовый метод планирования рыночной экономики
- Модель межотраслевого баланса
- 4.5. Модели стохастического программирования
- 3. Производственные функции
- 3.1.Виды производных функций
- 3.2. Пример построения производственной функции
- 3.3. Производственные функции и прогнозирование
- 4.6. Модели оптимального планирования транспортного типа
- 4.8. Производственно-транспортные модели
- 4.9. Транспортные модели с промежуточными пунктами
- Методы решения транспортных задач Метод северо-западного угла
- Метод минимальных элементов
- Метод Фогеля
- 4.11. Модели параметрического программирования
- 5. Матричные игры
- 5.1. Игры двух лиц с нулевой суммой
- 5.2. Верхнее и нижнее значения игры, условие седловой точки
- 5.3. Смешанные стратегии
- Очевидным следствием из Теоремы о минимаксе является соотношение
- 5.4. Игры с ненулевой суммой и кооперативные игры
- 5.5. Введение в теорию игр п лиц
- 5.6. Позиционные игры
- 5.7. Выбор оптимальной стратегии в условиях неопределенности (игры с природой)
- 5.7.2. Критерии выбора оптимальной стратегии
- 5.8. Применение теории матричных игр в управлении
- 6. Имитационное моделирование
- 6.1. Метод Монте-Карло
- 6.2. Моделирование систем массового обслуживания
- 6.2.1. Одноканальная модель с пуассоновским входным потоком с экспоненциальным распределением длительности обслуживания
- 6.2.2. Многоканальная модель с пуассоновским входным потоком и экспоненциальным распределением длительности обслуживания
- 6.3. Моделирование систем массового обслуживания с использованием метода Монте-Карло
- 7. Моделирование потребления
- Функции полезности
- 2. Функция полезности с полным дополнением благ (функция полезности Леонтьева):
- Совершенные товарозаменители.
- Основные виды кривых безразличия
- 2. Выпуклые предпочтения потребителя
- 8. Модели оценки финансового состояния
- 8.1.Виды моделей
- 8.1. Статическая модель и динамическая оценки финансового
- 9.2. Оптимальное планирование портфеля инвестиций
- 9.3 Учет факторов риска при оценке инвестиций
- 9.4. Определение уровня недиверсифицируемого риска методом корреляционно-регрессионного анализа
- Прогнозирование экономических процессов
- 1 Классификация предвидений (прогнозов)
- 2 Принципы организации прогнозирования
- 3. Порядок прогнозирования
- 4.2.Корреляционные методы
- Трендовая модель прогнозирования Понятие временного ряда
- Задачи анализа временного ряда
- Первоначальная подготовка данных
- Задача построения аналитического тренда
- Определение базы построения тренда
- 3.6 Наиболее употребимые виды трендов
- Определение тренда на основе сглаживания ряда
- Механическое сглаживание (пример для понимания)
- Аналитическое сглаживание
- Прогнозирование по тренду
- Прогнозирование на основе регрессионных моделей Понятие регрессии
- Отбор факторов для регрессии
- Вид функции регрессии