Прогнозирование на основе регрессионных моделей Понятие регрессии
Колебания в динамическом ряду часто не строго периодические, но зависят от колебаний другого признака (напр.: стоимость продаж от объёма продаж). Тогда эффективно строить зависимость ряда не от безликого (монотонного) времени, а от этого объясняющего ряда (фактора).
Регрессия – функция одной переменной (изучаемого динамического ряда) от другой(их), называемой(ых) фактором(ами) регрессии.
Регрессия – зависимость среднего значения ряда от значений факторов.
Порядок построения регрессии:
отбор факторов
выбор [функции] регрессии
расчет параметров регрессии
(прогнозирование)
Регрессионные модели
Экстраполяционные модели являются частный случаем регрессионных моделей, в которых вместо факторов, обуславливающих изменение признака, взят фактор времени.
В зависимости от количества учитываемых в модели факторов регрессионные модели делятся на однофакторные и многофакторные.
Пря построения многофакторных регрессионных моделей и расчете их параметров методом наименьших квадратов следует учитывать следующие требования:
Включаемые в модель факторы должны быть независимыми друг друга.
Независимые переменные представляют собой неслучайный набор чисел, их средние значения и дисперсия конечны.
Случайные ошибки имеют нулевую среднюю и конечную дисперсию
Между независимыми переменными отсутствует корреляция и автокорреляция
Случайная ошибка не коррелирована с независимыми переменными
Случайная ошибка подчинена нормальному закону распределения.
Примерам многофакторной модели опроса мажет служить следующая модель:
R=а0+а1*S+а2*C+а3*W,
Где R - сумма расходов на приобретение товаров группы в расчете на душу населения;
S - среднедушевой денежный доход;
C - цены на товары, усредненные по группе;
W - потребление товаров из внерыночных источников;
а0…а3 - параметры модели.
Отыскание параметров модели методом наименьших квадратов предполагает предварительную проверку автокоррелируемость введённых в модель факторов (S, C, W). При всей привлекательности многофакторных моделей, их реализация достаточно трудоемка и требует особой тщательности в отборе факторов и формирования исходной информационной базы. В связи с этим, широкое распространение получили однофакторные модели.
К качестве примера подробно рассмотрим пример изучения спроса в зависимости от цен.
В простейшем случае линейной связи между спросом Y и ценой X, модель регрессии имеет вид:
Y=а0+а1*X+а2*t, где
Y - спрос;
Х – цена товара;
t – время.
а0…а2 - параметры модели.
Фактор времени вводится в модель для устранения автокорреляции из динамического ряда.
Одним из существенных моментов при построении модели спроса в зависимости от цены является выбор показателя динамики цены (задание фактора Х.). В практике анализа спроса ценовой фактор учитывается, как правило, в виде базисного индекса цены товара, при этом берутся так называемые индексы цен товарного предложения или просто индексы розничных цен. На практике существуют отличия вызванные изменением ассортиментной. структуры производимой продукции, её качества. Для учёта этих отличий, динамику цен можно представить в виде динамики индекса средней цены реализации товара J:
J=Vф / Vc, где:
J – индекс средней цены реализации
Vф – объём продаж в фактических ценах,
Vc – объём продаж в сопоставимых ценах.
Содержательный анализ характера влияния на спрос динамики цены проводится на основе рассчитанных значений параметров уравнения регрессии.
Для случая линейной связи Y=а0+а1*X+а2*t имеем:
если А1<0, то это означает, что цена существенно влияет на размеры реализованного спроса,
если А1>0, то характерна ситуация изменения структуры опроса, его переключения на более дорогие и, соответственно, более качественные товары.
В случае криволинейной зависимости спроса от цены, аналогичный анализ можно провести путем замены криволинейной функции на кусочно-линейную. В атом случае значение параметра А1 можно определять для любой точки, находящейся на кривой, проведя касательную линию к искомой точке.
- Методы моделирования и прогнозирования
- 1. Экономико-математические методы и модели
- Определение модели и цели моделирования
- Последовательность построения экономико-математической модели
- Основные типы моделей
- Классификация экономико-математических методов
- 1.3. Объекты моделирования
- 1.4. Цель, критерий и ограничения в экономико-математических моделях
- Математические модели рынка
- Понятие рыночного равновесия
- Объем предложения
- 2.2. Паутинообразная модель рынка
- Балансовый метод планирования рыночной экономики
- Модель межотраслевого баланса
- 4.5. Модели стохастического программирования
- 3. Производственные функции
- 3.1.Виды производных функций
- 3.2. Пример построения производственной функции
- 3.3. Производственные функции и прогнозирование
- 4.6. Модели оптимального планирования транспортного типа
- 4.8. Производственно-транспортные модели
- 4.9. Транспортные модели с промежуточными пунктами
- Методы решения транспортных задач Метод северо-западного угла
- Метод минимальных элементов
- Метод Фогеля
- 4.11. Модели параметрического программирования
- 5. Матричные игры
- 5.1. Игры двух лиц с нулевой суммой
- 5.2. Верхнее и нижнее значения игры, условие седловой точки
- 5.3. Смешанные стратегии
- Очевидным следствием из Теоремы о минимаксе является соотношение
- 5.4. Игры с ненулевой суммой и кооперативные игры
- 5.5. Введение в теорию игр п лиц
- 5.6. Позиционные игры
- 5.7. Выбор оптимальной стратегии в условиях неопределенности (игры с природой)
- 5.7.2. Критерии выбора оптимальной стратегии
- 5.8. Применение теории матричных игр в управлении
- 6. Имитационное моделирование
- 6.1. Метод Монте-Карло
- 6.2. Моделирование систем массового обслуживания
- 6.2.1. Одноканальная модель с пуассоновским входным потоком с экспоненциальным распределением длительности обслуживания
- 6.2.2. Многоканальная модель с пуассоновским входным потоком и экспоненциальным распределением длительности обслуживания
- 6.3. Моделирование систем массового обслуживания с использованием метода Монте-Карло
- 7. Моделирование потребления
- Функции полезности
- 2. Функция полезности с полным дополнением благ (функция полезности Леонтьева):
- Совершенные товарозаменители.
- Основные виды кривых безразличия
- 2. Выпуклые предпочтения потребителя
- 8. Модели оценки финансового состояния
- 8.1.Виды моделей
- 8.1. Статическая модель и динамическая оценки финансового
- 9.2. Оптимальное планирование портфеля инвестиций
- 9.3 Учет факторов риска при оценке инвестиций
- 9.4. Определение уровня недиверсифицируемого риска методом корреляционно-регрессионного анализа
- Прогнозирование экономических процессов
- 1 Классификация предвидений (прогнозов)
- 2 Принципы организации прогнозирования
- 3. Порядок прогнозирования
- 4.2.Корреляционные методы
- Трендовая модель прогнозирования Понятие временного ряда
- Задачи анализа временного ряда
- Первоначальная подготовка данных
- Задача построения аналитического тренда
- Определение базы построения тренда
- 3.6 Наиболее употребимые виды трендов
- Определение тренда на основе сглаживания ряда
- Механическое сглаживание (пример для понимания)
- Аналитическое сглаживание
- Прогнозирование по тренду
- Прогнозирование на основе регрессионных моделей Понятие регрессии
- Отбор факторов для регрессии
- Вид функции регрессии