5.2. Верхнее и нижнее значения игры, условие седловой точки
Предполагается, что каждый из игроков знает стратегию своего противника и платежную матрицу игры. Рассмотрим с этой точки зрения некоторую конкретную игру (табл. 5.3).
Таблица 5.3
| Стратегия 1 | Стратегия 2 | Стратегия 3 | Минимум по строкам |
Стратегия 1 | 4 | 4 | 10 | 4 |
Стратегия 2 | 2 | 3 | 1 | 1 |
Стратегия 3 | 6 | 5 | 7 | 5 |
Максимум по столбцам | 6 | 5 | 10 |
|
Как должен играть первый игрок? Если первый игрок выберет свою первую стратегию, то второй игрок, очевидно, выберет первую или вторую, поскольку в этом случае его потери будут минимальными - 4 единицы. Значение «4» является минимальным в первой строке. Рассуждая аналогично, легко видеть, что если первый игрок выбирает свою вторую стратегию, то второй выбирает 3-ю, проигрывая при этом 1. Если первый игрок выбирает стратегию 3, то второй стратегию 2 с проигрышем 5. В крайнем правом столбце таблицы записаны минимумы по строкам. Логично предположить, что первый игрок будет выбирать стратегию, обеспечивающую ему выигрыш максимального из этих значений.
Мы доказали, что первый игрок может гарантированно выиграть, по крайней мере, 5 единиц. Он понимает, что на большее он рассчитывать не может, так как, выбирая стратегию 2, второй игрок обеспечивает выигрыш первого не более 5.
Матрица удовлетворяет условию седловой точки в том случае, если: max (минимумы по строкам) = min (максимум по столбцам) или
v=max min aij = min max aij (5.1)
i j j i
Величина v=max min aij, называется нижней ценой игры, или максималь-
i j
ным гарантированным выигрышем первого игрока (максимином).
Величина v=min max aij, называется верхней ценой игры, или максималь-
j i
ным гарантированным проигрышем второго игрока (минимаксом).
Матрица, которую мы рассматриваем, удовлетворяет условию седловой точки (5.1):
max (минимумы по строкам) = min (максимум по столбцам). (5.2)
Говорят, что если выполнено условие (5.1), то игра имеет седловую точку.
Если игра имеет седловую точку, то первый игрок может выбирать любую стратегию, для которой реализуется максимум в левой части соотношения (5.1) (максиминная стратегия), а второй игрок может выбрать любую стратегию, на которой реализуется минимум в правой части соотношения (5.1) (минимаксная стратегия). Если игра имеет седловую точку, то общее значение v, которое достигается слева и справа в соотношении (5.1), называется ценой игры.
Седловая точка может рассматриваться как точка равновесия в том смысле, что отклонение от нее для каждого из игроков невыгодно. Действительно, в нашем примере если первый игрок сменит свою оптимальную стратегию 2 на 1 или 3, то выигрыш первого (соответственно проигрыш второго) увеличится.
В итоге будет разумно ожидать, что в описанной выше игре противники будут придерживаться избранных стратегий. Матричная антагонистическая игра, для которой max min aij = min max aij называется вполне определенной, или игрой, имеющей решение в чистых стратегиях.
- Методы моделирования и прогнозирования
- 1. Экономико-математические методы и модели
- Определение модели и цели моделирования
- Последовательность построения экономико-математической модели
- Основные типы моделей
- Классификация экономико-математических методов
- 1.3. Объекты моделирования
- 1.4. Цель, критерий и ограничения в экономико-математических моделях
- Математические модели рынка
- Понятие рыночного равновесия
- Объем предложения
- 2.2. Паутинообразная модель рынка
- Балансовый метод планирования рыночной экономики
- Модель межотраслевого баланса
- 4.5. Модели стохастического программирования
- 3. Производственные функции
- 3.1.Виды производных функций
- 3.2. Пример построения производственной функции
- 3.3. Производственные функции и прогнозирование
- 4.6. Модели оптимального планирования транспортного типа
- 4.8. Производственно-транспортные модели
- 4.9. Транспортные модели с промежуточными пунктами
- Методы решения транспортных задач Метод северо-западного угла
- Метод минимальных элементов
- Метод Фогеля
- 4.11. Модели параметрического программирования
- 5. Матричные игры
- 5.1. Игры двух лиц с нулевой суммой
- 5.2. Верхнее и нижнее значения игры, условие седловой точки
- 5.3. Смешанные стратегии
- Очевидным следствием из Теоремы о минимаксе является соотношение
- 5.4. Игры с ненулевой суммой и кооперативные игры
- 5.5. Введение в теорию игр п лиц
- 5.6. Позиционные игры
- 5.7. Выбор оптимальной стратегии в условиях неопределенности (игры с природой)
- 5.7.2. Критерии выбора оптимальной стратегии
- 5.8. Применение теории матричных игр в управлении
- 6. Имитационное моделирование
- 6.1. Метод Монте-Карло
- 6.2. Моделирование систем массового обслуживания
- 6.2.1. Одноканальная модель с пуассоновским входным потоком с экспоненциальным распределением длительности обслуживания
- 6.2.2. Многоканальная модель с пуассоновским входным потоком и экспоненциальным распределением длительности обслуживания
- 6.3. Моделирование систем массового обслуживания с использованием метода Монте-Карло
- 7. Моделирование потребления
- Функции полезности
- 2. Функция полезности с полным дополнением благ (функция полезности Леонтьева):
- Совершенные товарозаменители.
- Основные виды кривых безразличия
- 2. Выпуклые предпочтения потребителя
- 8. Модели оценки финансового состояния
- 8.1.Виды моделей
- 8.1. Статическая модель и динамическая оценки финансового
- 9.2. Оптимальное планирование портфеля инвестиций
- 9.3 Учет факторов риска при оценке инвестиций
- 9.4. Определение уровня недиверсифицируемого риска методом корреляционно-регрессионного анализа
- Прогнозирование экономических процессов
- 1 Классификация предвидений (прогнозов)
- 2 Принципы организации прогнозирования
- 3. Порядок прогнозирования
- 4.2.Корреляционные методы
- Трендовая модель прогнозирования Понятие временного ряда
- Задачи анализа временного ряда
- Первоначальная подготовка данных
- Задача построения аналитического тренда
- Определение базы построения тренда
- 3.6 Наиболее употребимые виды трендов
- Определение тренда на основе сглаживания ряда
- Механическое сглаживание (пример для понимания)
- Аналитическое сглаживание
- Прогнозирование по тренду
- Прогнозирование на основе регрессионных моделей Понятие регрессии
- Отбор факторов для регрессии
- Вид функции регрессии