1.4. Цель, критерий и ограничения в экономико-математических моделях
При решении экономических задач мы ставим перед собой определенную цель, которую желаем достичь. Цель - это то, во имя чего осуществляется моделируемый производственный процесс.
Для выбора из множества возможных путей достижения цели наилучшего служит критерий оптимальности, т.е. признак, по которому могут сравниваться и оцениваться варианты достижения цели. Критерий оптимальности характеризует качество решения, эффективность намечаемого пути достижения цели. В качестве критерия оптимальности обычно принимают экономическую величину, экстремальное значение которой определяют в процессе решения задачи.
Критерий оптимальности должен иметь стоимостную, натуральную или временную размерность. Критерием оптимальности могут быть: объем СМР, прибыль, приведенные затраты, производительность труда и т.д.
Критерий оптимальности может быть локальным и глобальным. Глобальный критерий оценивает эффективность функционирования системы или организации с учетом согласованных между собой общих интересов системы или организации и внутренних интересов ее структурных подразделений.
Понятие глобального критерия может рассматриваться применительно к народному хозяйству в целом, его отдельным отраслям и предприятиям, имеющим относительно обособленные звенья. Возможной формулировкой народно-хозяйственного критерия оптимальности служит интегральная общественная полезность благ и услуг.
Для планирования деятельности отдельных отраслей народного хозяйства необходимы локальные критерии оптимальности, отличающиеся от глобального. Для отрасли строительства это может быть максимальный ввод в эксплуатацию объектов и сооружений или приведенные затраты.
Локальный критерий оптимальности конкретизирует требования глобального таким образом, чтобы интересы каждого предприятия и его звеньев совпадали с интересами народного хозяйства в целом.
В свою очередь критерий оптимальности функционирования отрасли, если рассматривать ее как относительно обособленную систему, является глобальным по отношению к локальным критериям функционирования предприятий и организаций отрасли.
Искомыми параметрами являются переменные, обеспечивающие достижение цели при экстремальном значении критерия оптимальности. Такими переменными могут быть: набор объектов, этапов и комплексов работ, максимизирующий программу работ строительной организации; распределение объемов выполняемых работ по способам производства, минимизирующее приведенные затраты на их выполнение и т.д.
Математическая интерпретация критерия оптимальности задач в виде функции многих переменных носит название целевой функции. Целевая функция обычно имеет вид:
(1.1)
Коэффициенты Cj при искомых переменных Xj представляют собой величину критерия оптимальности в расчете на единицу соответствующей переменной.
Система ограничений задачи представляет собой совокупность равенств или неравенств, с помощью которых устанавливают связь между искомыми переменными и определяют допустимые границы их изменения. Ограничения имеют вид:
(1.2) где Qij – норматив затрат i-го вида ресурса на единицу j-ой переменной;
bi - величина i-го вида ресурса.
Ограничения могут быть по выпускаемым изделиям и потребляемым материалам, основным и оборотным фондам, трудовым ресурсам, способам выполнения работ, срокам и т.д. Строгое равенство используют для реализации ограничений по потребностям, величина которых жестко фиксирована: объемы работ, количество ресурсов и т.д.
Неравенства вида ≤ записывают по лимитированным ресурсам: машинам, рабочим, капитальным вложениям и т.д.
Неравенства вида ≥ характеризуют ограничения по нелимитированным ресурсам и определяют минимально необходимый объем работ, минимальный выпуск продукции и т.д.
Если система ограничений содержит равенства и неравенства, то она может оказаться несовместной, т.е. неразрешимой. Несовместность системы ограничений, как правило, может быть установлена только в процессе решения задачи.
Потребность в трудовых и материально-технических ресурсах на единицу искомой переменной Xj-Qij задается в виде коэффициента при переменных в ограничениях.
ЭММ с формально математических позиций представляет собой задачу, в которой необходимо определить значение неизвестных переменных обращающих в минимум или максимум величину целевой функции при соблюдении ограничений, принятых для решения задачи.
- Методы моделирования и прогнозирования
- 1. Экономико-математические методы и модели
- Определение модели и цели моделирования
- Последовательность построения экономико-математической модели
- Основные типы моделей
- Классификация экономико-математических методов
- 1.3. Объекты моделирования
- 1.4. Цель, критерий и ограничения в экономико-математических моделях
- Математические модели рынка
- Понятие рыночного равновесия
- Объем предложения
- 2.2. Паутинообразная модель рынка
- Балансовый метод планирования рыночной экономики
- Модель межотраслевого баланса
- 4.5. Модели стохастического программирования
- 3. Производственные функции
- 3.1.Виды производных функций
- 3.2. Пример построения производственной функции
- 3.3. Производственные функции и прогнозирование
- 4.6. Модели оптимального планирования транспортного типа
- 4.8. Производственно-транспортные модели
- 4.9. Транспортные модели с промежуточными пунктами
- Методы решения транспортных задач Метод северо-западного угла
- Метод минимальных элементов
- Метод Фогеля
- 4.11. Модели параметрического программирования
- 5. Матричные игры
- 5.1. Игры двух лиц с нулевой суммой
- 5.2. Верхнее и нижнее значения игры, условие седловой точки
- 5.3. Смешанные стратегии
- Очевидным следствием из Теоремы о минимаксе является соотношение
- 5.4. Игры с ненулевой суммой и кооперативные игры
- 5.5. Введение в теорию игр п лиц
- 5.6. Позиционные игры
- 5.7. Выбор оптимальной стратегии в условиях неопределенности (игры с природой)
- 5.7.2. Критерии выбора оптимальной стратегии
- 5.8. Применение теории матричных игр в управлении
- 6. Имитационное моделирование
- 6.1. Метод Монте-Карло
- 6.2. Моделирование систем массового обслуживания
- 6.2.1. Одноканальная модель с пуассоновским входным потоком с экспоненциальным распределением длительности обслуживания
- 6.2.2. Многоканальная модель с пуассоновским входным потоком и экспоненциальным распределением длительности обслуживания
- 6.3. Моделирование систем массового обслуживания с использованием метода Монте-Карло
- 7. Моделирование потребления
- Функции полезности
- 2. Функция полезности с полным дополнением благ (функция полезности Леонтьева):
- Совершенные товарозаменители.
- Основные виды кривых безразличия
- 2. Выпуклые предпочтения потребителя
- 8. Модели оценки финансового состояния
- 8.1.Виды моделей
- 8.1. Статическая модель и динамическая оценки финансового
- 9.2. Оптимальное планирование портфеля инвестиций
- 9.3 Учет факторов риска при оценке инвестиций
- 9.4. Определение уровня недиверсифицируемого риска методом корреляционно-регрессионного анализа
- Прогнозирование экономических процессов
- 1 Классификация предвидений (прогнозов)
- 2 Принципы организации прогнозирования
- 3. Порядок прогнозирования
- 4.2.Корреляционные методы
- Трендовая модель прогнозирования Понятие временного ряда
- Задачи анализа временного ряда
- Первоначальная подготовка данных
- Задача построения аналитического тренда
- Определение базы построения тренда
- 3.6 Наиболее употребимые виды трендов
- Определение тренда на основе сглаживания ряда
- Механическое сглаживание (пример для понимания)
- Аналитическое сглаживание
- Прогнозирование по тренду
- Прогнозирование на основе регрессионных моделей Понятие регрессии
- Отбор факторов для регрессии
- Вид функции регрессии