logo search
Самоучитель по Maple

11. Моделирование физических явлений

Моделирование физических явлений

Расчет траектории камня с учетом сопротивления воздуха

Вы хотите метнуть камень в огород вашего вредного соседа? Разумеется, во время его отсутствия. Давайте промоделируем эту ситуацию, предположив два актуальных случая: дело происходит на Луне и на Земле. В первом случае сопротивления воздуха (как и его самого) нет, а в другом — сопротивление воздуха есть и его надо учитывать. Иначе камень упадет в ваш огород, а не в огород соседа!

Итак, пусть подвернувшиеся под руку камни с массой 500 и 100 г брошены под углом 45° к горизонту со скоростью Vo = 20 м/с. Найдем их баллистические траектории, если сила сопротивления воздуха Fтр=А*V, где А=0,1 Н*с/м. Сравним их с траекториями, получающимися без учета сопротивления воздуха.

Начнем с подключения пакета plots, нужного для визуализации данной задачи:

> restart;

> with(plots):

Warning, the name changecoords has been redefined

Составим параметрические уравнения для проекций скорости на оси координат:

> Vox:=Vo*cos(a1pha):Voy:=Vo*sin(alpha):

Vox:= Focos(a)

Voy :=Vo sin(a)

Мы рассматриваем два случая: камень массой 500 г и камень массой 100 г. Поскольку для каждого случая мы предусматриваем расчет в двух вариантах (с учетом сопротивления воздуха и без такого учета), то мы должны составить 4 системы дифференциальных уравнений (ДУ). Каждая система состоит из двух ДУ второго порядка и вид этих систем известен из курса физики. Ниже представлено задание этих систем ДУ (для первой системы дан вывод ее вида):

Зададим исходные числовые безразмерные данные для расчета:

Выполним решение заданных систем ДУ:

Создадим графические объекты — результаты решения систем ДУ:

Построим графики траекторий для первого случая:

Графики траекторий полета камня с массой 500 г представлены на рис. 17.6.

Рис. 17.6.Баллистические траектории камня с массой 500 г

Теперь построим графики траекторий для второго случая:

> display({a3,a4,t1},title='Tpaeкт. полета тела массой 100 г, labels=[x.у], labelfont=[TIMES.ROMAN,14]):

Они представлены на рис. 17.7.

Рис. 17.7.Баллистические траектории камня при массе 100 г

Из проведенных расчетов и графиков видно, что при учете силы сопротивления воздуха дальность и высота полета сильно уменьшаются по сравнению с полетом в вакууме, и эта разница зависит от массы тела, поэтому при небольшой массе тела сопротивлением воздуха пренебрегать нельзя.

17.gif

18.gif

19.gif

20.gif

21.gif

22.gif

23.gif

12. Движение частицы в магнитном поле

Движение частицы в магнитном поле

От реального мира перейдем к микромиру. Пусть микрочастица массой 9* 10-31кг и зарядом +1,6*10"19Кл влетает в магнитное поле с индукцией В = 0,1 Тл под углом а=80°. Рассчитаем траекторию движения частицы при начальной скорости Vo= 1*107м/с:

> restart;

Сила Лоренца, действующая на движущуюся частицу F = q*(E+[v, В]). Проекции векторного произведения [v, В] на оси х, у, z:

[v.B]x=vy*Bz-vz*By [v,B]y=vz*Bx-vx*Bz [v,B]z=vx*By-vy*Bz

В соответствии с этим известные из курса физики дифференциальные уравнения, описывающие траекторию полета частицы по осям х, у, z имеют вид:

Зададим исходные числовые данные (опустив размерности):

> q:=-1.6e-19: massa:=9.1e-31: V:=le7: alpha:=80*Pi/180:

> Vx:=V*cos(alpha): Vy:=V*sin(alpha): Ex:=0:Ey:=0:Ez:=0: Bx:=0.1:By:=0: Bz:=0:

Построим траекторию движения частиц в пространстве:

> with(DEtools):DEplot3d({sys},{x(t),y(t),z(t)},t=0..2e-9, [[x(0)=O,D(x)(0)=Vx,y(0)==0,D(y)(0)=Vy,z(0)=0,D(z)(0)=0]], stepsize=le-ll,orientation=[24.117]):

Полученная траектория представлена на рис. 17.8. Она имеет вид спирали в пространстве. При этом скорость движения частицы вдоль оси х неизменна, а вдоль осей у и z имеет характерную колебательную компоненту. Случай явно куда менее тривиальный, чем полет камня, описанный выше.

Рис. 17.8.Траектория движения частицы в магнитном поле

Мы можем найти аналитическое представление для траектории частицы в виде параметрически заданной (с параметром времени t) системы из трех уравнений:

Моделирование движения заряженной частицы в пространстве с магнитным полем показывает, что для принятых для моделирования параметров решаемой задачи, движение частицы происходит по спиралеобразной траектории. Получен как график траектории движения частицы, так и аналитические уравнения, описывающие это движение.

24.gif

25.gif

26.gif