logo
Самоучитель по Maple

14. Оценка степеней полинома Оценка степеней полинома

Функция degree возвращает высшую степень полинома, а ldegree — низшую степень. Эти функции задаются следующим образом:

degree(a.x) ldegree(a.x)

Функции degree и ldegree используются, чтобы определить высшую и низшую степени полинома от неизвестного (неизвестных) х, которое чаще всего является единственным, но может быть списком или множеством неизвестных. Полином может иметь отрицательные целые показатели степеней при х. Таким образом, degree и ldegree могут возвратить отрицательное или положительное целое число. Если выражение не является полиномом от х данным параметром, то возвращается FAIL.

Чтобы degree и ldegree возвратили точный результат, полином обязательно должен быть сгруппирован по степеням х. Например, для выражения (х + 1) (х+ 2) - х2 функция degree не обнаружит аннулирование старшего члена и неправильно возвратит результат 2. Во избежание этой проблемы перед вызовом degree следует применять к полиному функции collect или expand. Если х — множество неизвестных, degree/ ldegree вычисляет полную степень. Если х — список неизвестных, degree/ldegree вычисляет векторную степень. Векторная степень определяется следующим образом:

degree(p.[]) =0

degree(p.[xl.x2,...]) =degree(p.xl) degree(lcoeff(p.xl),[x2....])

Полная степень тогда определяется следующим образом:

degree(p.{xl....,xn}) - maximum degree(p.{xl....xn})

или

degree(p,{xl....,xn}) = degree(p.[xl,....xn])

Обращаем внимание на то, что векторная степень зависит от порядка перечисления неизвестных, а полная степень не зависит.

Примеры применения функций degree и ldegree:

21.gif

15. Разложение полинома на множители

Разложение полинома на множители

Для контроля того, имеет ли полином несокращаемые множители, может использоваться функция irredik(p) и ее вариант в инертной форме Ireduc(p.K), где К — RootOf-выражение. Ниже приведены примеры применения этих тестовых функций:

22.gif

16. Разложение полинома по степеням

Разложение полинома по степеням

Для разложения полинома р по степеням служат инертные функции AFactor(р) и AFactors(p). Полином может быть представлен в виде зависимости от одной или нескольких переменных.

Функция Afactor(p) выполняет полную факторизацию (разложение) полинома р от нескольких переменных с коэффициентами в виде алгебраических чисел над полем комплексных чисел. При этом справедливо отношение evala(AFactor(p) )=factor(p,complex). Таким образом, эта функция является, по существу, избыточной.

В случае одномерного полинома полное разложение на множители является разложением на линейные множители. Функция AFactors аналогична функции Afactor, но создает структуру данных формы [u,[[f[l],e[l]],....[f[n],e[n]]]] так, что p=u*f[l]xe[l]*...*f[n]^e[n], где каждый f[i] — неприводимый полином.

Ниже даны примеры применения функции Afactor:

Нетрудно заметить, что разложение полинома на множители позволяет оценить наличие у него корней. Однако для этого удобнее воспользоваться специальными функциями, рассмотренными ниже.

23.gif