logo search
Самоучитель по Maple

10. Работа с функциями piecewise Работа с функциями piecewise

С функциями типа piecewise можно работать, как с обычными функциями. При этом необходимые операции и преобразования осуществляются для каждой из частей функции и возвращаются в наглядной форме.

Ниже приведен пример задания функции f в аналитической форме:

Для выявления характера функции воспользуемся функцией convert и создадим объект g в виде кусочной функции:

Выполним дифференцирование и интегрирование функции:

Как нетрудно заметить, результаты получены также в виде кусочных функций. Можно продолжить работу с функцией f и выполнить ее разложение в степенной ряд:

> series(f, х);

-1+.Х + О(x6)

Чтобы убрать член с остаточной погрешностью, можно выполнить эту операцию следующим образом:

> series(g, x);

-1 + х

Обратите внимание на то, что поскольку разложение в ряд ищется (по умолчанию) в окрестности точки х=0, то при этом используется тот кусок функции, в котором расположена эта точка. Читатель может продолжить работу с кусочными функциями и далее.

15.gif

16.gif

17.gif

11. Операции с полиномами

Операции с полиномами

Определение полиномов

К числу наиболее известных и изученных аналитических функций относятся степенные многочлены — полиномы. Графики полиномов описывают огромное разнообразие кривых на плоскости. Кроме того, возможны рациональные полиномиальные выражения в виде отношения полиномов. Таким образом, круг объектов, которые могут быть представлены полиномами, достаточно обширен, и полиномиальные преобразования широко используются на практике, в частности, для приближенного представления других функций.

Под полиномом в системе Maple 7 понимается сумма выражений с целыми степенями. Многочлен для ряда переменных —многомерный полином. К одномерным полиномам относятся степенной многочлен:

а также отдельная переменная х и константа. Большое достоинство полиномов состоит в том, что они дают единообразное представление многих зависимостей и для своего вычисления требуют только арифметических операций (их число значительно сокращается при использовании хорошо известной схемы Горнера). Производные от полиномов и интегралы с подынтегральными функциями-полиномами легко вычисляются и имеют простой вид. Есть и достаточно простые алгоритмы для вычисления всех (в том числе комплексных) корней полиномов на заданном промежутке.