Бескоалиционные игры
В таких играх каждый игрок действует самостоятельно.
Игра Г=<N, {xi}, i N, {Hi}, i N> , где N — множество игроков, xi-множество стратегий i-го игрока, Hi — множество функций выигрыша каждого игрока для каждой ситуации.
Каждый игрок выбирает некоторую стратегию из множества xi :
i x(i) xi , получаем ситуацию (x(1),x(2),…,x(N)). В результате каждый из игроков получает выигрыш Hi(x(1),x(2),…,x(N)), i N.
Это описание бескоалиционной игры в нормальной форме. Игроки выбирают свои стратегии xi независимо друг от друга. Если для каждого игрока множество стратегий xi конечно, то получаем конечную бескоалиционную игру. Если хотя бы один из игроков имеет бесконечное число стратегий, то это бесконечная бескоалиционная игра.
Простейшей бескоалиционной игрой является игра двух лиц. Они могут не только выигрывать или проигрывать, но и делать это совместно (одновременно выигрывать или проигрывать).
Опишем такую игру (бескоалиционную) в нормальной форме:
Г=<x1,x2,H1,H2>, где {x1,x2}-множество стратегий, H1,H2— функции выигрыша.
(x(1),x(2)) H1(x(1),x(2)), H2(x(1),x(2))
Ясно, что если игра конечна, то матрицу Н можно рассмотреть как
H1=(aij) m*n A
H2=(bij) m*n B
Такую игру называют биматричной: Г=<A,B>; aij= -bij , , , следовательно, игра антагонистическая.
- Основные понятия теории игр
- Классификация игр
- Описание игры в развернутой форме
- Бескоалиционные игры
- Приемлемые ситуации и ситуации равновесия в игре
- Стратегическая эквивалентность игр
- Антагонистические игры. Общие сведения
- Чистые и смешанные стратегии
- Верхняя и нижняя цены игры при использовании смешанных стратегий
- Основная теорема антагонистических игр.
- Верхние и нижние цены в s-игре
- Разделительная и опорная гиперплоскость двух выпуклых множеств
- Теорема о минимаксе
- Геометрическая интерпретация минимакса
- Решение антагонистических игр. Доминирующие и полезные стратегии
- Игры с частными случаями платежных матриц
- Решение матричных игр
- Линейное программирование для решения матричных игр
- Графическое решение игр 2*n и m*2
- Бесконечные антагонистические игры
- Строго выпуклые игры на единичном квадрате
- Неантагонистические игры
- Бескоалиционные игры
- Охрана воздушного бассейна от загрязнений атмосферы
- Принципы оптимальности в бескоалиционных играх
- Принцип оптимальности по Парето
- Смешанное расширение бескоалиционной игры
- Коалиционные и кооперативные игры
- Характеристическая функция коалиционной игры
- Свойства характеристической функции
- Дележи в кооперативной игре
- Стратегическая эквивалентность кооперативных игр
- Общие сведения об играх с природой или теория статистических решений.
- Пространство стратегий природы
- Пространство стратегий статистика и функция выигрыша
- Критерии выбора решений при неопределённости
- Статистические игры без эксперимента. Представление игры с природой в виде s-игры
- Допустимые стратегии в статистических играх
- Геометрическая интерпретация выбора байесовской стратегии
- Статистические игры с проведением единичного эксперимента Общие сведения
- Пространство выборок
- Функции риска
- Принцип выбора стратегий в играх с единичным экспериментом.
- Байесовский принцип.
- Число чистых стратегий статистика в игре с единичным экспериментом.
- Апостериорные распределения вероятности.
- Определение байесовских решений с использованием апостериорных вероятностей
- Двуальтернативная задача
- Анализ целесообразности проведения экспериментов
- Использование апостериорной вероятности для определения последовательных байесовских правил
- Правило последовательных выборок
- Функция риска при оптимальном последовательном правиле