Линейная зависимость векторов
Определение. Векторы называютсялинейно зависимыми, если существует такая линейная комбинация , при не равных нулю одновременноi , т.е. .
Если же только при i = 0 выполняется , то векторы называются линейно независимыми.
Свойство 1. Если среди векторов есть нулевой вектор, то эти векторы линейно зависимы.
Свойство 2. Если к системе линейно зависимых векторов добавить один или несколько векторов, то полученная система тоже будет линейно зависима.
Свойство 3. Система векторов линейно зависима тогда и только тогда, когда один из векторов раскладывается в линейную комбинацию остальных векторов.
Свойство 4. Любые 2 коллинеарных вектора линейно зависимы и, наоборот, любые 2 линейно зависимые векторы коллинеарны.
Свойство 5. Любые 3 компланарных вектора линейно зависимы и, наоборот, любые 3 линейно зависимые векторы компланарны.
Свойство 6. Любые 4 вектора линейно зависимы.
Yandex.RTB R-A-252273-3
- Линейная алгебра Основные определения
- Операция умножения матриц
- Свойства операции умножения матриц
- Определители (детерминанты)
- Алгебраические дополнения
- Обратная матрица
- Базисный минор матрицы Ранг матрицы
- Матричный метод решения систем линейных уравнений
- Метод Крамера
- Элементарные преобразования систем
- Теорема Кронекера – Капелли
- Метод Гаусса
- Элементы векторной алгебры
- Свойства векторов
- Линейная зависимость векторов
- Система координат
- Декартова система координат
- Линейные операции над векторами в координатах Пусть заданы векторы в прямоугольной системе координат
- Скалярное произведение векторов
- Векторное произведение векторов
- Смешанное произведение векторов
- Свойства смешанного произведения:
- Уравнение поверхности в пространстве
- Общее уравнение плоскости
- Уравнение плоскости, проходящей через три точки
- Полярная система координат
- Линейное (векторное) пространство
- Линейные преобразования
- Матрицы линейных преобразований
- Собственные значения и собственные векторы линейного преобразования
- Введение в математический анализ Предел функции в точке
- Предел функции при стремлении аргумента к бесконечности
- Основные теоремы о пределах
- Некоторые замечательные пределы
- Комплексные числа
- Тригонометрическая форма числа
- Действия с комплексными числами
- Дифференциальное исчисление функции одной переменной Производная функции, ее геометрический и физический смысл
- Основные правила дифференцирования
- Производная обратных функций
- Производные и дифференциалы высших порядков
- Общие правила нахождения высших производных
- Исследование функций с помощью производной Возрастание и убывание функций
- Точки экстремума
- Исследование функции на экстремум с помощью производных высших порядков
- Выпуклость и вогнутость кривой Точки перегиба
- Асимптоты
- Вертикальные асимптоты
- Наклонные асимптоты
- Векторная функция скалярного аргумента
- Параметрическое задание функции
- Производная функции, заданной параметрически
- Функции нескольких переменных
- Производные и дифференциалы функций нескольких переменных
- Полное приращение и полный дифференциал
- Геометрический смысл полного дифференциала Касательная плоскость и нормаль к поверхности
- Приближенные вычисления с помощью полного дифференциала
- Частные производные высших порядков
- Экстремум функции нескольких переменных
- Условный экстремум
- Производная по направлению
- Градиент
- Связь градиента с производной по направлению