logo
kurs-lekcij-po-matematike--1-_

Основные теоремы о пределах

Теорема 1. , где С =const.

Следующие теоремы справедливы при предположении, что функции f(x) и g(x) имеют конечные пределы при ха.

Теорема 2.

Доказательство этой теоремы будет приведено ниже.

Теорема 3.

Следствие.

Теорема 4. при

Теорема 5. Если f(x)>0 вблизи точки х = а и , то А>0.

Аналогично определяется знак предела при f(x) < 0, f(x)  0, f(x)  0.

Теорема 6. Если g(x) f(x) u(x) вблизи точки х = а и , то и.

Пример. Найти предел

Так как tg5x ~ 5x и sin7x ~ 7x при х  0, то, заменив функции эквивалентными бесконечно малыми, получим:

Пример. Найти предел .

Так как 1 – cosx = при х0, то .

Пример. Найти предел

Если  и  - бесконечно малые при ха, причем  - бесконечно малая более высокого порядка, чем , то  =  +  - бесконечно малая, эквивалентная . Это можно доказать следующим равенством .

Тогда говорят, что  - главная часть бесконечно малой функции .

Пример. Функция х2 +х – бесконечно малая при х0, х – главная часть этой функции. Чтобы показать это, запишем  = х2,  = х, тогда

.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4