Наклонные асимптоты
Предположим, что кривая y = f(x) имеет наклонную асимптоту y = kx + b.
M
j
N
j P
Q
Обозначим точку пересечения кривой и перпендикуляра к асимптоте – М, Р – точка пересечения этого перпендикуляра с асимптотой. Угол между асимптотой и осью Ох обозначим j. Перпендикуляр МQ к оси Ох пересекает асимптоту в точке N.
Тогда MQ = y – ордината точки кривой, NQ = - ордината точки N на асимптоте.
По условию: , ÐNMP = j, .
Угол j - постоянный и не равный 900, тогда
Тогда .
Итак, прямая y = kx + b – асимптота кривой. Для точного определения этой прямой необходимо найти способ вычисления коэффициентов k и b.
В полученном выражении выносим за скобки х:
Т.к. х®¥, то , т.к.b = const, то .
Тогда , следовательно,
.
Т.к. , то, следовательно,
Отметим, что горизонтальные асимптоты являются частным случаем наклонных асимптот при k =0.
Пример. Найти асимптоты и построить график функции .
1) Вертикальные асимптоты: y®+¥ x®0-0: y®-¥ x®0+0, следовательно, х = 0- вертикальная асимптота.
2) Наклонные асимптоты:
Таким образом, прямая у = х + 2 является наклонной асимптотой.
Построим график функции:
Пример. Найти асимптоты и построить график функции .
Прямые х = 3 и х = -3 являются вертикальными асимптотами кривой.
Найдем наклонные асимптоты:
y = 0 – горизонтальная асимптота.
Пример. Найти асимптоты и построить график функции .
Прямая х = -2 является вертикальной асимптотой кривой.
Найдем наклонные асимптоты.
Итого, прямая у = х – 4 является наклонной асимптотой.
Схема исследования функций
Процесс исследования функции состоит из нескольких этапов. Для наиболее полного представления о поведении функции и характере ее графика необходимо отыскать:
Область существования функции.
Это понятие включает в себя и область значений и область определения функции.
Точки разрыва. (Если они имеются).
Интервалы возрастания и убывания.
Точки максимума и минимума.
Максимальное и минимальное значение функции на ее области определения.
Области выпуклости и вогнутости.
Точки перегиба.(Если они имеются).
Асимптоты.(Если они имеются).
Построение графика.
Применение этой схемы рассмотрим на примере.
Пример. Исследовать функцию и построить ее график.
Находим область существования функции. Очевидно, что областью определения функции является область (-¥; -1) È (-1; 1) È (1; ¥).
В свою очередь, видно, что прямые х = 1, х = -1 являются вертикальными асимптотами кривой.
Областью значений данной функции является интервал (-¥; ¥).
Точками разрыва функции являются точки х = 1, х = -1.
Находим критические точки.
Найдем производную функции
Критические точки: x = 0; x = -; x = ; x = -1; x = 1.
Найдем вторую производную функции
.
Определим выпуклость и вогнутость кривой на промежутках.
-¥ < x < -, y¢¢ < 0, кривая выпуклая
- < x < -1, y¢¢ < 0, кривая выпуклая
-1 < x < 0, y¢¢ > 0, кривая вогнутая
0 < x < 1, y¢¢ < 0, кривая выпуклая
1 < x < , y¢¢ > 0, кривая вогнутая
< x < ¥, y¢¢ > 0, кривая вогнутая
Находим промежутки возрастания и убывания функции. Для этого определяем знаки производной функции на промежутках.
-¥ < x < -, y¢ > 0, функция возрастает
- < x < -1, y¢ < 0, функция убывает
-1 < x < 0, y¢ < 0, функция убывает
0 < x < 1, y¢ < 0, функция убывает
1 < x < , y¢ < 0, функция убывает
< x < ¥, y¢¢ > 0, функция возрастает
Видно, что точка х = - является точкой максимума, а точка х = является точкой минимума. Значения функции в этих точках равны соответственно -3/2 и 3/2.
Про вертикальные асимптоты было уже сказано выше. Теперь найдем наклонные асимптоты.
Итого, уравнение наклонной асимптоты – y = x.
Построим график функции:
Yandex.RTB R-A-252273-3
- Линейная алгебра Основные определения
- Операция умножения матриц
- Свойства операции умножения матриц
- Определители (детерминанты)
- Алгебраические дополнения
- Обратная матрица
- Базисный минор матрицы Ранг матрицы
- Матричный метод решения систем линейных уравнений
- Метод Крамера
- Элементарные преобразования систем
- Теорема Кронекера – Капелли
- Метод Гаусса
- Элементы векторной алгебры
- Свойства векторов
- Линейная зависимость векторов
- Система координат
- Декартова система координат
- Линейные операции над векторами в координатах Пусть заданы векторы в прямоугольной системе координат
- Скалярное произведение векторов
- Векторное произведение векторов
- Смешанное произведение векторов
- Свойства смешанного произведения:
- Уравнение поверхности в пространстве
- Общее уравнение плоскости
- Уравнение плоскости, проходящей через три точки
- Полярная система координат
- Линейное (векторное) пространство
- Линейные преобразования
- Матрицы линейных преобразований
- Собственные значения и собственные векторы линейного преобразования
- Введение в математический анализ Предел функции в точке
- Предел функции при стремлении аргумента к бесконечности
- Основные теоремы о пределах
- Некоторые замечательные пределы
- Комплексные числа
- Тригонометрическая форма числа
- Действия с комплексными числами
- Дифференциальное исчисление функции одной переменной Производная функции, ее геометрический и физический смысл
- Основные правила дифференцирования
- Производная обратных функций
- Производные и дифференциалы высших порядков
- Общие правила нахождения высших производных
- Исследование функций с помощью производной Возрастание и убывание функций
- Точки экстремума
- Исследование функции на экстремум с помощью производных высших порядков
- Выпуклость и вогнутость кривой Точки перегиба
- Асимптоты
- Вертикальные асимптоты
- Наклонные асимптоты
- Векторная функция скалярного аргумента
- Параметрическое задание функции
- Производная функции, заданной параметрически
- Функции нескольких переменных
- Производные и дифференциалы функций нескольких переменных
- Полное приращение и полный дифференциал
- Геометрический смысл полного дифференциала Касательная плоскость и нормаль к поверхности
- Приближенные вычисления с помощью полного дифференциала
- Частные производные высших порядков
- Экстремум функции нескольких переменных
- Условный экстремум
- Производная по направлению
- Градиент
- Связь градиента с производной по направлению