logo
kurs-lekcij-po-matematike--1-_

Определители (детерминанты)

Определение. Определителем квадратной матрицы А=называется число, которое может быть вычислено по элементам матрицы по формуле:

det A = , где

М – детерминант матрицы, полученной из исходной вычеркиванием первой строки и k – го столбца. Следует обратить внимание на то, что определители имеют только квадратные матрицы, т.е. матрицы, у которых число строк равно числу столбцов.

Предыдущая формула позволяет вычислить определитель матрицы по первой строке, также справедлива формула вычисления определителя по первому столбцу:

det A =

Вообще говоря, определитель может вычисляться по любой строке или столбцу матрицы, т.е. справедлива формула:

detA = , i = 1,2,…,n.

Очевидно, что различные матрицы могут иметь одинаковые определители.

Определитель единичной матрицы равен 1.

Для указанной матрицы А число М называется дополнительным минором элемента матрицы a1k. Таким образом, можно заключить, что каждый элемент матрицы имеет свой дополнительный минор. Дополнительные миноры существуют только в квадратных матрицах.

Определение. Дополнительный минор произвольного элемента квадратной матрицы aij равен определителю матрицы, полученной из исходной вычеркиванием i-ой строки и j-го столбца.

Пример. Вычислить определитель матрицы А =

= -5 + 18 + 6 = 19.

Пример:. Даны матрицы А = , В =. Найти det (AB).

1-й способ: det A = 4 – 6 = -2; det B = 15 – 2 = 13;

det (AB) = det A det B = -26.

2- й способ: AB = ,

det (AB) = 718 - 819 = 126 – 152 = -26.

Миноры

Определение. Если в матрице А выделить несколько произвольных строк и столько же произвольных столбцов, то определитель, составленный из элементов, расположенных на пересечении этих строк и столбцов называется минором матрицы А. Если выделено s строк и столбцов, то полученный минор называется минором порядка s.

Заметим, что вышесказанное применимо не только к квадратным матрицам, но и к прямоугольным.

Если вычеркнуть из исходной квадратной матрицы А выделенные строки и столбцы, то определитель полученной матрицы будет являться дополнительным минором.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4