Производная по направлению
Рассмотрим функцию u(x, y, z) в точке М( x, y, z) и точке М1( x + Dx, y + Dy, z + Dz).
Проведем через точки М и М1 вектор . Углы наклона этого вектора к направлению координатных осей х, у, z обозначим соответственно a, b, g. Косинусы этих углов называются направляющими косинусами вектора .
Расстояние между точками М и М1 на векторе обозначимDS.
Высказанные выше предположения, проиллюстрируем на рисунке:
z
M
M1
y
x
Далее предположим, что функция u(x, y, z) непрерывна и имеет непрерывные частные производные по переменным х, у и z. Тогда правомерно записать следующее выражение:
,
где величины e1, e2, e3 – бесконечно малые при .
Из геометрических соображений очевидно:
Таким образом, приведенные выше равенства могут быть представлены следующим образом:
;
Заметим, что величина s является скалярной. Она лишь определяет направление вектора .
Из этого уравнения следует следующее определение:
Определение: Предел называетсяпроизводной функции u(x, y, z) по направлению вектора в точке с координатами ( x, y, z).
Пример. Вычислить производную функции z = x2 + y2x в точке А(1, 2) по направлению вектора . В (3, 0).
Решение. Прежде всего необходимо определить координаты вектора .
=(3-1; 0-2) = (2; -2) = 2.
Далее определяем модуль этого вектора:
=
Находим частные производные функции z в общем виде:
Значения этих величин в точке А :
Для нахождения направляющих косинусов вектора производим следующие преобразования:
=
За величину принимается произвольный вектор, направленный вдоль заданного вектора, т.е. определяющего направление дифференцирования.
Отсюда получаем значения направляющих косинусов вектора :
cosa = ; cosb = -
Окончательно получаем: - значение производной заданной функции по направлению вектора .
Yandex.RTB R-A-252273-3
- Линейная алгебра Основные определения
- Операция умножения матриц
- Свойства операции умножения матриц
- Определители (детерминанты)
- Алгебраические дополнения
- Обратная матрица
- Базисный минор матрицы Ранг матрицы
- Матричный метод решения систем линейных уравнений
- Метод Крамера
- Элементарные преобразования систем
- Теорема Кронекера – Капелли
- Метод Гаусса
- Элементы векторной алгебры
- Свойства векторов
- Линейная зависимость векторов
- Система координат
- Декартова система координат
- Линейные операции над векторами в координатах Пусть заданы векторы в прямоугольной системе координат
- Скалярное произведение векторов
- Векторное произведение векторов
- Смешанное произведение векторов
- Свойства смешанного произведения:
- Уравнение поверхности в пространстве
- Общее уравнение плоскости
- Уравнение плоскости, проходящей через три точки
- Полярная система координат
- Линейное (векторное) пространство
- Линейные преобразования
- Матрицы линейных преобразований
- Собственные значения и собственные векторы линейного преобразования
- Введение в математический анализ Предел функции в точке
- Предел функции при стремлении аргумента к бесконечности
- Основные теоремы о пределах
- Некоторые замечательные пределы
- Комплексные числа
- Тригонометрическая форма числа
- Действия с комплексными числами
- Дифференциальное исчисление функции одной переменной Производная функции, ее геометрический и физический смысл
- Основные правила дифференцирования
- Производная обратных функций
- Производные и дифференциалы высших порядков
- Общие правила нахождения высших производных
- Исследование функций с помощью производной Возрастание и убывание функций
- Точки экстремума
- Исследование функции на экстремум с помощью производных высших порядков
- Выпуклость и вогнутость кривой Точки перегиба
- Асимптоты
- Вертикальные асимптоты
- Наклонные асимптоты
- Векторная функция скалярного аргумента
- Параметрическое задание функции
- Производная функции, заданной параметрически
- Функции нескольких переменных
- Производные и дифференциалы функций нескольких переменных
- Полное приращение и полный дифференциал
- Геометрический смысл полного дифференциала Касательная плоскость и нормаль к поверхности
- Приближенные вычисления с помощью полного дифференциала
- Частные производные высших порядков
- Экстремум функции нескольких переменных
- Условный экстремум
- Производная по направлению
- Градиент
- Связь градиента с производной по направлению