Метод Гаусса
В отличие от матричного метода и метода Крамера, метод Гаусса может быть применен к системам линейных уравнений с произвольным числом уравнений и неизвестных. Суть метода заключается в последовательном исключении неизвестных.
Рассмотрим систему линейных уравнений:
Разделим обе части 1–го уравнения на a11 0, затем:
1) умножим на а21 и вычтем из второго уравнения
2) умножим на а31 и вычтем из третьего уравнения
и т.д.
Получим:
, где d1j = a1j/a11, j = 2, 3, …, n+1.
dij = aij – ai1d1j i = 2, 3, … , n; j = 2, 3, … , n+1.
Далее повторяем эти же действия для второго уравнения системы, потом – для третьего и т.д.
Пример. Решить систему линейных уравнений методом Гаусса.
Составим расширенную матрицу системы.
А* =
Таким образом, исходная система может быть представлена в виде:
, откуда получаем: x3 = 2; x2 = 5; x1 = 1.
Пример. Решить систему методом Гаусса.
Составим расширенную матрицу системы.
Таким образом, исходная система может быть представлена в виде:
, откуда получаем: z = 3; y = 2; x = 1.
Полученный ответ совпадает с ответом, полученным для данной системы методом Крамера и матричным методом.
Yandex.RTB R-A-252273-3
- Линейная алгебра Основные определения
- Операция умножения матриц
- Свойства операции умножения матриц
- Определители (детерминанты)
- Алгебраические дополнения
- Обратная матрица
- Базисный минор матрицы Ранг матрицы
- Матричный метод решения систем линейных уравнений
- Метод Крамера
- Элементарные преобразования систем
- Теорема Кронекера – Капелли
- Метод Гаусса
- Элементы векторной алгебры
- Свойства векторов
- Линейная зависимость векторов
- Система координат
- Декартова система координат
- Линейные операции над векторами в координатах Пусть заданы векторы в прямоугольной системе координат
- Скалярное произведение векторов
- Векторное произведение векторов
- Смешанное произведение векторов
- Свойства смешанного произведения:
- Уравнение поверхности в пространстве
- Общее уравнение плоскости
- Уравнение плоскости, проходящей через три точки
- Полярная система координат
- Линейное (векторное) пространство
- Линейные преобразования
- Матрицы линейных преобразований
- Собственные значения и собственные векторы линейного преобразования
- Введение в математический анализ Предел функции в точке
- Предел функции при стремлении аргумента к бесконечности
- Основные теоремы о пределах
- Некоторые замечательные пределы
- Комплексные числа
- Тригонометрическая форма числа
- Действия с комплексными числами
- Дифференциальное исчисление функции одной переменной Производная функции, ее геометрический и физический смысл
- Основные правила дифференцирования
- Производная обратных функций
- Производные и дифференциалы высших порядков
- Общие правила нахождения высших производных
- Исследование функций с помощью производной Возрастание и убывание функций
- Точки экстремума
- Исследование функции на экстремум с помощью производных высших порядков
- Выпуклость и вогнутость кривой Точки перегиба
- Асимптоты
- Вертикальные асимптоты
- Наклонные асимптоты
- Векторная функция скалярного аргумента
- Параметрическое задание функции
- Производная функции, заданной параметрически
- Функции нескольких переменных
- Производные и дифференциалы функций нескольких переменных
- Полное приращение и полный дифференциал
- Геометрический смысл полного дифференциала Касательная плоскость и нормаль к поверхности
- Приближенные вычисления с помощью полного дифференциала
- Частные производные высших порядков
- Экстремум функции нескольких переменных
- Условный экстремум
- Производная по направлению
- Градиент
- Связь градиента с производной по направлению