logo
kurs-lekcij-po-matematike--1-_

Действия с комплексными числами

Основные действия с комплексными числами вытекают из действий с многочленами.

1) Сложение и вычитание

2) Умножение

В тригонометрической форме:

,

С случае комплексно – сопряженных чисел:

3) Деление

В тригонометрической форме:

4) Возведение в степень

Из операции умножения комплексных чисел следует, что

В общем случае получим:

,

где n целое положительное число.

Это выражение называется формулой Муавра.

(Абрахам де Муавр (1667 – 1754) – английский математик)

Формулу Муавра можно использовать для нахождения тригонометрических функций двойного, тройного и т.д. углов.

Пример. Найти формулы sin2 и cos2.

Рассмотрим некоторое комплексное число

Тогда с одной стороны .

По формуле Муавра:

Приравнивая, получим

Т.к. два комплексных числа равны, если равны их действительные и мнимые части, то

Получили известные формулы двойного угла.

5) Извлечение корня из комплексного числа

Возводя в степень, получим:

Отсюда:

Таким образом, корень n – ой степени из комплексного числа имеет n различных значений.

Пример. Даны два комплексных числа . Требуется а) найти значение выраженияв алгебраической форме, б) для числанайти тригонометрическую форму, найтиz20, найти корни уравнения

  1. Очевидно, справедливо следующее преобразование:

Далее производим деление двух комплексных чисел:

Получаем значение заданного выражения: 16(-i)4 = 16i4 =16.

б) Число представим в виде, где

Тогда .

Для нахождения воспльзуемся формулой Муавра.

Если , то

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4