Собственные значения и собственные векторы линейного преобразования
Определение: Пусть L – заданное n- мерное линейное пространство. Ненулевой вектор L называется собственным вектором линейного преобразования А, если существует такое число , что выполняется равенство:
A.
При этом число называется собственным значением (характеристическим числом) линейного преобразования А, соответствующего вектору .
Определение: Если линейное преобразование А в некотором базисе ,,…,имеет матрицу А =, то собственные значения линейного преобразования А можно найти как корни1, 2, … ,n уравнения:
Это уравнение называется характеристическим уравнением, а его левая часть- характеристическим многочленом линейного преобразования А.
Пример. Найти характеристические числа и собственные векторы линейного преобразования с матрицей А = .
Запишем линейное преобразование в виде:
Составим характеристическое уравнение:
2 - 8 + 7 = 0;
Корни характеристического уравнения: 1 = 7; 2 = 1;
Для корня 1 = 7:
Из системы получается зависимость: x1 – 2x2 = 0. Собственные векторы для первого корня характеристического уравнения имеют координаты: (t; 0,5t) где t- параметр.
Для корня 2 = 1:
Из системы получается зависимость: x1 + x2 = 0. Собственные векторы для второго корня характеристического уравнения имеют координаты: (t; -t) где t- параметр.
Полученные собственные векторы можно записать в виде:
Пример. Найти характеристические числа и собственные векторы линейного преобразования А, матрица линейного преобразования А = .
Составим характеристическое уравнение:
(1 - )((5 - )(1 - ) - 1) - (1 - - 3) + 3(1 - 15 + 3) = 0
(1 - )(5 - 5 - + 2 - 1) + 2 + - 42 + 9 = 0
(1 - )(4 - 6 + 2) + 10 - 40 = 0
4 - 6 + 2 - 4 + 62 - 3 + 10 - 40 = 0
-3 + 72 – 36 = 0
-3 + 92 - 22 – 36 = 0
-2( + 2) + 9(2 – 4) = 0
( + 2)(-2 + 9 - 18) = 0
Собственные значения: 1 = -2; 2 = 3; 3 = 6;
1) Для 1 = -2:
Если принять х1 = 1, то х2 = 0; x3 = -1;
Собственные векторы:
2) Для 2 = 3:
Если принять х1 = 1, то х2 = -1; x3 = 1;
Собственные векторы:
3) Для 3 = 6:
Если принять х1 = 1, то х2 = 2; x3 = 1;
Собственные векторы:
Yandex.RTB R-A-252273-3
- Линейная алгебра Основные определения
- Операция умножения матриц
- Свойства операции умножения матриц
- Определители (детерминанты)
- Алгебраические дополнения
- Обратная матрица
- Базисный минор матрицы Ранг матрицы
- Матричный метод решения систем линейных уравнений
- Метод Крамера
- Элементарные преобразования систем
- Теорема Кронекера – Капелли
- Метод Гаусса
- Элементы векторной алгебры
- Свойства векторов
- Линейная зависимость векторов
- Система координат
- Декартова система координат
- Линейные операции над векторами в координатах Пусть заданы векторы в прямоугольной системе координат
- Скалярное произведение векторов
- Векторное произведение векторов
- Смешанное произведение векторов
- Свойства смешанного произведения:
- Уравнение поверхности в пространстве
- Общее уравнение плоскости
- Уравнение плоскости, проходящей через три точки
- Полярная система координат
- Линейное (векторное) пространство
- Линейные преобразования
- Матрицы линейных преобразований
- Собственные значения и собственные векторы линейного преобразования
- Введение в математический анализ Предел функции в точке
- Предел функции при стремлении аргумента к бесконечности
- Основные теоремы о пределах
- Некоторые замечательные пределы
- Комплексные числа
- Тригонометрическая форма числа
- Действия с комплексными числами
- Дифференциальное исчисление функции одной переменной Производная функции, ее геометрический и физический смысл
- Основные правила дифференцирования
- Производная обратных функций
- Производные и дифференциалы высших порядков
- Общие правила нахождения высших производных
- Исследование функций с помощью производной Возрастание и убывание функций
- Точки экстремума
- Исследование функции на экстремум с помощью производных высших порядков
- Выпуклость и вогнутость кривой Точки перегиба
- Асимптоты
- Вертикальные асимптоты
- Наклонные асимптоты
- Векторная функция скалярного аргумента
- Параметрическое задание функции
- Производная функции, заданной параметрически
- Функции нескольких переменных
- Производные и дифференциалы функций нескольких переменных
- Полное приращение и полный дифференциал
- Геометрический смысл полного дифференциала Касательная плоскость и нормаль к поверхности
- Приближенные вычисления с помощью полного дифференциала
- Частные производные высших порядков
- Экстремум функции нескольких переменных
- Условный экстремум
- Производная по направлению
- Градиент
- Связь градиента с производной по направлению