Коваріація і коефіцієнт кореляції
Коваріацією (або кореляційним моментом) двовимірної випадкової величини називають математичне сподівання добутку відхилень кожної з компонент від свого математичного сподівання
.
Зокрема для дискретного випадкового вектора
або
,
а для неперервного
або
.
Оскільки математичне сподівання добутку двох незалежних випадкових величин дорівнює добутку їх математичних сподівань, то коваріація вектора з незалежними компонентами дорівнює нулю. Отже, якщо коваріація випадкового вектора відмінна від нуля, то його компоненти є стохастично залежними випадковими величинами (обернене твердження не справджується).
Коваріацію можна розглядати як міру залежності випадкових величин, які є компонентами вектора, однак вона враховує не тільки рівень залежності величин, а й їх розсіювання навколо точки на площині. Тому залежність між компонентами двовимірного випадкового вектора характеризують безрозмірною величиною
,
яку називають коефіцієнтом лінійної кореляції.
Очевидно, що коефіцієнт лінійної кореляції незалежних випадкових величин дорівнює нулю.
Дві випадкові величини називають некорельованими, якщо їх коефіцієнт лінійної кореляції дорівнює нулю і корельованими у протилежному випадку. Незалежні випадкові величини завжди некорельовані. Обернене твердження не справджується. Однак для нормально розподілених випадкових величин некорельованість рівнозначна стохастичній незалежності.
Покажемо, що
.
Оскільки дисперсія випадкової величини невід’ємна, то
.
Тому
.
Аналогічно доводять, що
,
розглянувши випадкову величину , і тому
,
що й треба було довести.
На відміну від коваріації, коефіцієнт лінійної кореляції не залежить від ступеня розсіювання випадкових величин і характеризує лише міру їх залежності. Зокрема, якщо , то величини і — лінійно залежні.
Наведемо приклад знаходження в пакеті Maple коефіцієнта лінійної кореляції двовимірної випадкової величини.
Приклад 14. Знайти коефіцієнт лінійної кореляції компонент вектора, заданого щільністю
.
Розв’язання: Задаємо щільність розподілу випадкового вектора (X,Y):
> restart:f:=(x,y)->14/Pi*sqrt(3)*exp(-16*x^2-28*x*y-49*y^2);
Знаходимо щiльності розподілів випадкових величин Х і Y:
> f1:=x->int(f(x,y),y=-infinity..infinity);f1(x);
> f2:=y->int(f(x,y),x=-infinity..infinity);f2(y);
Обчислюємо математичні сподівання, дисперсії та середньоквадратичні їх відхилення:
> m1:=int(x*f1(x),x=-infinity..infinity);D1:=int(x^2*f1(x),x=-infinity..infinity)-m1^2;sigma1:=sqrt(D1);
> m2:=int(y*f2(y),y=-infinity..infinity);D2:=int(y^2*f2(y),y=-infinity..infinity)-m2^2;sigma2:=sqrt(D2);
Обчислюємо коваріацію випадкового вектора:
> COV(X,Y):=int(int(x*y*f(x,y),x=-infinity..infinity),y=-infinity..infinity)-m1*m2;
та коефіцієнт лінійної кореляції:
> r(X,Y):=COV(X,Y)/sigma1/sigma2;
Як бачимо, коефіцієнт лінійної кореляції дорівнює .
- Основи теорії ймовірностей і статистичні методи обробки даних у психологічних і педагогічних експериментах.– Львів: Видавничий центр лну імені Івана Франка, 2006. – 168 с.
- І. Основи теорії ймовірностей
- Формула повної ймовірності
- Формули Байєса
- Задачі до розділу і.
- Іі. Випадкова величина Поняття випадкової величини
- Функція розподілу випадкової величини
- Щільність розподілу неперервно розподіленої випадкової величини
- Характеристики розподілу випадкової величини
- Математичне сподівання випадкової величини
- Дисперсія та стандартне відхилення випадкової величини. Асиметрія і ексцес.
- Квантилі
- Деякі дискретні розподіли Розподіл Бернуллі
- Біномний розподіл
- Апроксимаційні формули Муавра-Лапласа Локальна теорема Муавра-Лапласа Якщо у схемі Бернулі величина , коли , то
- Функція розподілу двовимірної випадкової величини
- Умовні закони розподілу
- Коваріація і коефіцієнт кореляції
- Коваріаційна матриця і матриця парних кореляцій
- Граничні закони теорії ймовірностей Нерівність Чебишева
- Теорема Чебишева
- Закон Бернуллі
- Теорема Ляпунова
- Задачі до розділу іі.
- Ііі. Елементи математичної статистики
- Генеральна сукупність і вибірка
- Дискретний варіаційний ряд
- Інтервальний варіаційний ряд
- Точкові та інтервальні оцінки
- Поняття про статистичну перевірку гіпотез
- Задачі до розділу ііі.
- Іv. Методи математичної обробки даних у психології Ознаки і змінні. Шкали вимірювання ознак
- Перевірка гіпотези про однорідність вибірки
- Перевірка гіпотези про узгодженість розподілів
- Критерій Пірсона
- Критерій Колмогорова
- Критерій Смирнова
- Перевірка гіпотези про рівність двох дисперсій
- Виявлення відмінностей у рівні досліджуваної ознаки Критерій Розенбаума
- Критерій Манна-Уітні
- К ритерій Стьюдента
- І. Вибірки взяті з однієї генеральної сукупності
- Іі. Вибірки взяті з різних генеральних сукупностей
- Перевірка наявності зсуву у значеннях досліджуваної ознаки
- Критерій знаків
- Критерій Вілкоксона
- Парний t-тест Стьюдента
- Перевірка впливу фактора на зміну рівня досліджуваної ознаки
- Критерій Краскела-Уоллеса
- Критерій тенденцій Джонкхієра
- Критерій Фрідмана
- К ритерій тенденцій Пейджа
- Однофакторний дисперсійний аналіз
- П еревірка наявності зв’язку між двома ознаками
- Зв'язок ознак, виміряних у номінативних шкалах
- Зв'язок ознак, виміряних у порядкових шкалах
- Зв'язок ознак, виміряних в інтервальних шкалах
- Задачі до розділу іv.
- Критичні значення розподілу
- Критичні значення розподілу Фішера-Снедекора
- Критичні значення критерію Розенбаума
- Критичні значення критерію Манна-Уітні
- Критичні значення критерію знаків
- Критичні значення критерію Вілкоксона
- Критичні значення критерію Краскела-Уоллеса
- Критичні значення критерію Джонкхієра
- Критичні значення критерію Фрідмана
- Критичні значення критерію Пейджа
- Критичні значення рангового коефіцієнта кореляції Спірмена
- Д о д а т о к 2: Елементи вищої математики Матриці, визначники, системи лінійних рівнянь Поняття матриці. Операції над матрицями.
- Визначник матриці. Обернена матриця
- Системи лінійних алгебричних рівнянь
- Вступ до математичного аналізу
- Числові послідовності та їх границі
- Границя функції в точці. Односторонні границі
- Неперервність функції
- Диференціальне числення функцій однієї змінної Похідна функції в точці
- Диференційовність функції
- Монотонність функції. Екстремуми
- Похідні вищих порядків
- Інтегральне числення функцій однієї змінної Первісна функції. Невизначений інтеграл
- В изначений інтеграл
- Невластиві інтеграли
- Частинні похідні функцій багатьох змінних
- Д о д а т о к 3: Деякі команди Maple 8.
- Алфавітний покажчик
- Основи теорії ймовірностей і статистичні методи аналізу даних у психологічних і педагогічних експериментах