Д о д а т о к 2: Елементи вищої математики Матриці, визначники, системи лінійних рівнянь Поняття матриці. Операції над матрицями.
Матрицею розмірності m n називають прямокутну таблицю чисел, яка складається з m рядків і п стовпчиків. Числа, які утворюють матрицю називають елементами матриці. Матриці позначають великими літерами латинського алфавіту, а їх елементи відповідними малими літерами з індексами. Наприклад,
.
Дві матриці називаються рівними, якщо вони мають однакову розмірність і їх відповідні елементи рівні. .
Матриця, яка складається з одного рядка (одного стовпчика) називається вектор-рядком (вектор-стовпчиком). Як правило замість або відповідно пишуть та .
Квадратною матрицею п-го порядку називається матриця, яка складається з п рядків і п стовпчиків. Наприклад, — квадратна матриця 2-го порядку. Квадратна матриця, всі елементи якої дорівнюють нулеві, називається
нуль-матрицею.
Елементи квадратної матриці п-го порядку називаються діагональними і утворюють головну діагональ матриці. Матриця, всі елементи якої окрім діагональних дорівнюють нулеві, називається діагональною. Діагональну матрицю, у якої всі діагональні елементи дорівнюють одиниці, називають одиничною і позначають буквою Е.
Добутком матриці на число називатимемо матрицю , кожен елемент якої дорівнює відповідному елементу матриці А, помноженому на скаляр . Наприклад, якщо , то . Матрицю –А=–1А називають протилежною до матриці А.
Сумою матриць і однакової розмірності називають матрицю , кожен елемент якої дорівнює сумі відповідних елементів матриць А і В. Наприклад, якщо , а , то .
Добутком матриці розмірності т п на матрицю розмірності п р називають матрицю розмірності т р, кожен елемент якої є сумою добутків елементів відповідного рядка матриці А на відповідний стовпчик матриці В. Наприклад, якщо , а , то .
Зауважимо, що добуток матриць є некомутативною операцією. Так в останньому прикладі добуток FD не існує, оскільки кількість стовпчиків матриці F не дорівнює кількості рядків матриці D. Але навіть якщо обидва добутки
існують, вони, як правило, не рівні між собою. Наприклад, , але .
Справджуються такі властивості:
1) 2) 3) 7) 8) 9) | 4) 5) 6) 10) 11) 12) |
Матриця називається транспонованою до матриці . Очевидно, що коли розмірність матриці А дорівнює тп, то розмірність транспонованої матриці — пт. Наприклад, якщо , то .
Справджуються такі властивості операції транспонування:
1) 2) | 3) 4) |
- Основи теорії ймовірностей і статистичні методи обробки даних у психологічних і педагогічних експериментах.– Львів: Видавничий центр лну імені Івана Франка, 2006. – 168 с.
- І. Основи теорії ймовірностей
- Формула повної ймовірності
- Формули Байєса
- Задачі до розділу і.
- Іі. Випадкова величина Поняття випадкової величини
- Функція розподілу випадкової величини
- Щільність розподілу неперервно розподіленої випадкової величини
- Характеристики розподілу випадкової величини
- Математичне сподівання випадкової величини
- Дисперсія та стандартне відхилення випадкової величини. Асиметрія і ексцес.
- Квантилі
- Деякі дискретні розподіли Розподіл Бернуллі
- Біномний розподіл
- Апроксимаційні формули Муавра-Лапласа Локальна теорема Муавра-Лапласа Якщо у схемі Бернулі величина , коли , то
- Функція розподілу двовимірної випадкової величини
- Умовні закони розподілу
- Коваріація і коефіцієнт кореляції
- Коваріаційна матриця і матриця парних кореляцій
- Граничні закони теорії ймовірностей Нерівність Чебишева
- Теорема Чебишева
- Закон Бернуллі
- Теорема Ляпунова
- Задачі до розділу іі.
- Ііі. Елементи математичної статистики
- Генеральна сукупність і вибірка
- Дискретний варіаційний ряд
- Інтервальний варіаційний ряд
- Точкові та інтервальні оцінки
- Поняття про статистичну перевірку гіпотез
- Задачі до розділу ііі.
- Іv. Методи математичної обробки даних у психології Ознаки і змінні. Шкали вимірювання ознак
- Перевірка гіпотези про однорідність вибірки
- Перевірка гіпотези про узгодженість розподілів
- Критерій Пірсона
- Критерій Колмогорова
- Критерій Смирнова
- Перевірка гіпотези про рівність двох дисперсій
- Виявлення відмінностей у рівні досліджуваної ознаки Критерій Розенбаума
- Критерій Манна-Уітні
- К ритерій Стьюдента
- І. Вибірки взяті з однієї генеральної сукупності
- Іі. Вибірки взяті з різних генеральних сукупностей
- Перевірка наявності зсуву у значеннях досліджуваної ознаки
- Критерій знаків
- Критерій Вілкоксона
- Парний t-тест Стьюдента
- Перевірка впливу фактора на зміну рівня досліджуваної ознаки
- Критерій Краскела-Уоллеса
- Критерій тенденцій Джонкхієра
- Критерій Фрідмана
- К ритерій тенденцій Пейджа
- Однофакторний дисперсійний аналіз
- П еревірка наявності зв’язку між двома ознаками
- Зв'язок ознак, виміряних у номінативних шкалах
- Зв'язок ознак, виміряних у порядкових шкалах
- Зв'язок ознак, виміряних в інтервальних шкалах
- Задачі до розділу іv.
- Критичні значення розподілу
- Критичні значення розподілу Фішера-Снедекора
- Критичні значення критерію Розенбаума
- Критичні значення критерію Манна-Уітні
- Критичні значення критерію знаків
- Критичні значення критерію Вілкоксона
- Критичні значення критерію Краскела-Уоллеса
- Критичні значення критерію Джонкхієра
- Критичні значення критерію Фрідмана
- Критичні значення критерію Пейджа
- Критичні значення рангового коефіцієнта кореляції Спірмена
- Д о д а т о к 2: Елементи вищої математики Матриці, визначники, системи лінійних рівнянь Поняття матриці. Операції над матрицями.
- Визначник матриці. Обернена матриця
- Системи лінійних алгебричних рівнянь
- Вступ до математичного аналізу
- Числові послідовності та їх границі
- Границя функції в точці. Односторонні границі
- Неперервність функції
- Диференціальне числення функцій однієї змінної Похідна функції в точці
- Диференційовність функції
- Монотонність функції. Екстремуми
- Похідні вищих порядків
- Інтегральне числення функцій однієї змінної Первісна функції. Невизначений інтеграл
- В изначений інтеграл
- Невластиві інтеграли
- Частинні похідні функцій багатьох змінних
- Д о д а т о к 3: Деякі команди Maple 8.
- Алфавітний покажчик
- Основи теорії ймовірностей і статистичні методи аналізу даних у психологічних і педагогічних експериментах