Критерій Фрідмана
Критерій Фрідмана дозволяє перевірити гіпотезу про відсутність відмінності в ріні досліджуваної ознаки для трьох і більше зв’язаних вибірок (тестування однієї групи в різних умовах змушуючого фактора). Альтернативною виступає гіпотеза про наявність такої відмінності.
Статистика Фрідмана обчислюється за формулою
,
де п — кількість об’єктів у групі, k — кількість замірів, що відповідають різним значенням змушуючого фактора, — сума рангів для -го заміру, отриманих ранжуванням замірів окремо для кожного досліджуваного об’єкта.
Критерій має правосторонню критичну область. Для невеликих вибірок і невеликого k=3 та k=4 критичні значення статистики Фрідмана наведено в таблиці 12 додатка. Для великих вибірок статистика має розподіл, близький до з ступенем вільності.
Заміри i та j можна вважати попарно різними на спільному рівні значущості , якщо
,
де і — квантиль нормального розподілу рівня .
У пакеті Statistica 6.0 критерій Фрідмана реалізовано у субмодулі Comparing multiple dep. samples (variables) модуля Nonparametrics.
Приклад 35. З групою з семи учнів протягом двох місяців проводився тренінг, спрямований на зниження їх агресивності. Заміри індексів ворожості (Iv) та агресивності (Ia) за методикою Басса-Даркі у цій групі проведені перед початком тренінгу, після його завершення та через півроку після тренінгу подано в таблиці. Чи можна стверджувати, що тренінг виявився ефективним?
Учень | Iv | Ia | ||||
20.02 | 8.05 | 30.10 | 20.02 | 8.05 | 30.10 | |
Б-н Наталка | 11 | 6 | 5 | 20 | 11 | 19 |
Г-к Тарас | 12 | 5 | 11 | 24 | 12 | 14 |
Д-ц Микола | 13 | 7 | 5 | 21 | 18 | 20 |
Л-о Марта | 10 | 4 | 15 | 12 | 7 | 13 |
С-а Оксана | 6 | 4 | 6 | 9 | 8 | 6 |
С-л Юлія | 9 | 6 | 5 | 12 | 7 | 8 |
Ш-о Юлія | 10 | 4 | 7 | 14 | 9 | 11 |
Розв’язання: Сформулюємо статистичні гіпотези.
Н0: Рівні індексу з часом статистично не змінилися.
Н1: Відмінності різних замірів рівнів індексів істотні.
Перевірку гіпотез для індексу ворожості проведемо вручну. Подальші дослідження здійснимо з використанням пакету Statistica 6.0.
Для знаходження статистики Фрідмана проранжуємо окремо для кожного учня показники індексу ворожості.
Учень | Iv | |||||
20.02 | 8.05 | 30.10 | ||||
Б-н Наталка | 11 | 3 | 6 | 2 | 5 | 1 |
Г-к Тарас | 12 | 3 | 5 | 1 | 11 | 2 |
Д-ц Микола | 13 | 3 | 7 | 2 | 5 | 1 |
Л-о Марта | 10 | 2 | 4 | 1 | 15 | 3 |
С-а Оксана | 6 | 2,5 | 4 | 1 | 6 | 2,5 |
С-л Юлія | 9 | 3 | 6 | 2 | 5 | 1 |
Ш-о Юлія | 10 | 3 | 4 | 1 | 7 | 2 |
Суми рангів |
| 19,5 |
| 10 |
| 12,5 |
Емпіричне значення статистики Фрідмана
.
Критичні значення статистики Фрідмана для дорівнюють , . Оскільки , то на цьому рівні значущості нульову гіпотезу можемо відхилити.
Відмінність між замірами можна вважати істотною на рівні значущості , якщо модуль різниці рангових сум перевищує число
.
У нашому випадку , тобто після тренінгу відбувся достовірний зсув рівня індексу ворожості, який з часом не змінився.
Результати перевірки відмінностей індексу агресивності в пакеті Statistica 6.0 наведені на рис. 27. Як бачимо рівень значущості емпіричного значення статистики дорівнює 0,0058 і є істотно меншим, ніж навіть 0,01. Отже, рівні замірів індексу агресивності істотно відрізняються. Далі . Тобто істотними є відмінності між рівнями індексу агресивності до і відразу після тренінгу. Однак з часом ці відмінності нівелюються. Як бачимо, в цілому тренінг можна вважати ефективним.
- Основи теорії ймовірностей і статистичні методи обробки даних у психологічних і педагогічних експериментах.– Львів: Видавничий центр лну імені Івана Франка, 2006. – 168 с.
- І. Основи теорії ймовірностей
- Формула повної ймовірності
- Формули Байєса
- Задачі до розділу і.
- Іі. Випадкова величина Поняття випадкової величини
- Функція розподілу випадкової величини
- Щільність розподілу неперервно розподіленої випадкової величини
- Характеристики розподілу випадкової величини
- Математичне сподівання випадкової величини
- Дисперсія та стандартне відхилення випадкової величини. Асиметрія і ексцес.
- Квантилі
- Деякі дискретні розподіли Розподіл Бернуллі
- Біномний розподіл
- Апроксимаційні формули Муавра-Лапласа Локальна теорема Муавра-Лапласа Якщо у схемі Бернулі величина , коли , то
- Функція розподілу двовимірної випадкової величини
- Умовні закони розподілу
- Коваріація і коефіцієнт кореляції
- Коваріаційна матриця і матриця парних кореляцій
- Граничні закони теорії ймовірностей Нерівність Чебишева
- Теорема Чебишева
- Закон Бернуллі
- Теорема Ляпунова
- Задачі до розділу іі.
- Ііі. Елементи математичної статистики
- Генеральна сукупність і вибірка
- Дискретний варіаційний ряд
- Інтервальний варіаційний ряд
- Точкові та інтервальні оцінки
- Поняття про статистичну перевірку гіпотез
- Задачі до розділу ііі.
- Іv. Методи математичної обробки даних у психології Ознаки і змінні. Шкали вимірювання ознак
- Перевірка гіпотези про однорідність вибірки
- Перевірка гіпотези про узгодженість розподілів
- Критерій Пірсона
- Критерій Колмогорова
- Критерій Смирнова
- Перевірка гіпотези про рівність двох дисперсій
- Виявлення відмінностей у рівні досліджуваної ознаки Критерій Розенбаума
- Критерій Манна-Уітні
- К ритерій Стьюдента
- І. Вибірки взяті з однієї генеральної сукупності
- Іі. Вибірки взяті з різних генеральних сукупностей
- Перевірка наявності зсуву у значеннях досліджуваної ознаки
- Критерій знаків
- Критерій Вілкоксона
- Парний t-тест Стьюдента
- Перевірка впливу фактора на зміну рівня досліджуваної ознаки
- Критерій Краскела-Уоллеса
- Критерій тенденцій Джонкхієра
- Критерій Фрідмана
- К ритерій тенденцій Пейджа
- Однофакторний дисперсійний аналіз
- П еревірка наявності зв’язку між двома ознаками
- Зв'язок ознак, виміряних у номінативних шкалах
- Зв'язок ознак, виміряних у порядкових шкалах
- Зв'язок ознак, виміряних в інтервальних шкалах
- Задачі до розділу іv.
- Критичні значення розподілу
- Критичні значення розподілу Фішера-Снедекора
- Критичні значення критерію Розенбаума
- Критичні значення критерію Манна-Уітні
- Критичні значення критерію знаків
- Критичні значення критерію Вілкоксона
- Критичні значення критерію Краскела-Уоллеса
- Критичні значення критерію Джонкхієра
- Критичні значення критерію Фрідмана
- Критичні значення критерію Пейджа
- Критичні значення рангового коефіцієнта кореляції Спірмена
- Д о д а т о к 2: Елементи вищої математики Матриці, визначники, системи лінійних рівнянь Поняття матриці. Операції над матрицями.
- Визначник матриці. Обернена матриця
- Системи лінійних алгебричних рівнянь
- Вступ до математичного аналізу
- Числові послідовності та їх границі
- Границя функції в точці. Односторонні границі
- Неперервність функції
- Диференціальне числення функцій однієї змінної Похідна функції в точці
- Диференційовність функції
- Монотонність функції. Екстремуми
- Похідні вищих порядків
- Інтегральне числення функцій однієї змінної Первісна функції. Невизначений інтеграл
- В изначений інтеграл
- Невластиві інтеграли
- Частинні похідні функцій багатьох змінних
- Д о д а т о к 3: Деякі команди Maple 8.
- Алфавітний покажчик
- Основи теорії ймовірностей і статистичні методи аналізу даних у психологічних і педагогічних експериментах