Обобщенно-однородные уравнения и приводящиеся к ним
Обобщенно-однородные уравнения не меняются при одновременном
растяжении (сжатии) независимой и зависимой переменных по правилу: где произвольная постоянная, а k – некоторое число. Они могут быть записаны в виде
Замена и = ух-k приводит обобщенно-однородное уравнение к уравнению с разделяющимися переменными , см. разд. 2.1.
К обобщенно-однородному уравнению сводится уравнение
Для этого надо сделать замену z = ex и положить
Линейное уравнение
Линейное уравнение первого порядка имеет вид
Решение ищем в виде произведения y = uv , где функция v = v(x) удовлетворяет «укороченному» уравнению [в качестве такой функции можно взять частное решение v = e-F, где ]. Для функции и = и(х) получим уравнение с разделяющимися переменными Интегрируя уравнение для и , находим общее решение
где
П р и м е р 5. Решить задачу Коши:
Записываем это линейное уравнение в стандартном виде
Полагая y = u v, получим
Сгруппировав слагаемые, получим два уравнения:
и
Записываем первое в виде , откуда и = х2 + 1. Подставляя это во второе уравнение, находим = 1 или v = х + C. Подставляя сюда х = 1, у = 2, получим С = 0. Решение задачи Коши имеет вид у = х(х2+1).
Yandex.RTB R-A-252273-3
- Обыкновенные дифференциальные уравнения первого порядка
- 5 Уравнения, не разрешенные относительно производной ………………………………. 12
- 5.3 Уравнения вида ……………………………………………………………..13
- Предисловие
- Общие понятия. Задача Коши. Теоремы существования и единственности
- 1.1 Уравнения, разрешенные относительно производной. Общее решение
- Уравнения, не разрешенные относительно производной.
- Особые решения
- Уравнения, разрешенные относительно производной. Простейшие методы
- 2.1 Уравнения с разделенными и разделяющимися переменными
- Уравнение вида
- Однородные уравнения и приводящиеся к ним
- Обобщенно-однородные уравнения и приводящиеся к ним
- Уравнение Бернулли
- 2.7 Уравнение вида
- Уравнение в полных дифференциалах. Интегрирующий множитель
- 3.1 Уравнение в полных дифференциалах
- Интегрирующий множитель
- Уравнение Риккати
- Использование частных решений для построения общего решения
- Уравнения, не разрешенные относительно производной
- 5.1 Метод «интегрирования посредством дифференцирования»
- Уравнения вида
- Уравнения вида
- Уравнение Клеро
- 5.5 Уравнение Лагранжа
- Приближенные аналитические методы решения уравнений
- 6.1 Метод последовательных приближений (метод Пикара)
- Метод разложения в ряд Тейлора по независимой переменной
- Метод регулярного разложения по малому параметру
- Список литературы
- Обыкновенные дифференциальные уравнения первого порядка
- 446086 Самара, Московское шоссе, 34.