3) Нехай в деякому околі точки Хо,крім можливо самой точки Хо, виконується нерівність
Якщо ф-ції та мають границю в точці Хо при чому , то ф-ція також має границю в цій точці і .
4)якщо ф-ція y= має в точці Хо границю, тобто , то y=f(x) – обмежена при Х Хо.
Питання 3 Частинний приріст і частинні похідні І-го порядку.
називається частинним приростом функції за змінною x.
Аналогічно вводиться частинний приріст функції за змінною :
Якщо існує границя
,
то вона називається частинною похідною функції в точці за змінною x і позначається одним із таких символів:
.
Аналогічно частинна похідна функції за визначається як границя
і позначається одним із символів:
.
Питання 4 Інтегрування найпростіших раціональних дробів.
Дріб називають раціональним, якщо його чисель-ник та знаменник е багаточленами.
Інтеграли від найпростіших раціональних дробів І-го та П-го типів знаходять методом безпосереднього інтегрування. При інтегруванні найпростішого дробу Ш-го типу треба спочат-ку в знаменнику виділити повний квадрат, а потім той вираз, що під квадратом, замінити через нову змінну. Інтеграл від найпростішого дробу типу IV шляхом повторного інтегрування частинами зводять до інтеграла від найпростішого дро-бу типуIII.
Будь-який правильний раціональний дріб розкла-дається на суму найпростіших раціональних дробів, коефіцієнти яких можна знайти методом невизначених коефіцієнтів.
Питання 5 Достатні ознаки збіжності додатних числових рядів. Ознака порівняння.
. Ознака порівняння.
Маємо 2 ряди:
Для членів яких виконується нерівність an≤bn (для всіх n). Тоді якщо перший ряд збіжний, то і другий також збіжний.
Якщо перший ряд розбіжний, то і другий ряд також розбіжний.
БІЛЕТ 18
Питання 1
Канонічне та параметричне рівняння прямої.
Рівняння F(х,у)=0 називається рівняння лінії на площині , якщо це рівняння задовольняє координати (х,у) будь-якої точки, що лежить на цій ліній , і не задовольняє координати жодної точки, що не лежить на цій лінії.
Канонічне – нехай відомі точка M ( прямої та її напрямний вектор , a M(x;y;z) – деяка змінна точка цієї прямої.
Параметричні рівняння прямої:
Якщо позначити через t спільне значення відношень канонічного рівняння прямої, то отримуємо параметричні рівняння
t- параметр
Питання 2
Властивості границь функцій:границя сталої,суми,добутку,границя степеневої функції.
Т1 Якщо де с довільне число то .Т2 Якщо існують границі
то виконуються такі співвідношення:
Yandex.RTB R-A-252273-3- 1 . Матриці, основні поняття
- 2 ) Різновиди рівняння площини у просторі:за трьома точками, у відрізках на осях, нормальне.
- 2)Рівняння площини, що проходить через задану точку перпендикулярно до заданого вектора. Загальне рівняння площини і його дослідження.
- 4)З означення диференціала функції випливає, що при достатньо малих і має місце наближена рівність
- 5) Диференціальні рівняння першого порядку. Основні поняття.
- 1) Визначники квадратних матриць. Способи обчислення визначників.
- 2) Кут між площинами. Умови паралельності і перпендикулярності двох площин.
- 4) Обчислення наближеного значення функції в точці за допомогою повного диференціала.
- 5) Диференціальні рівняння з відокремлюваннями змінними.
- 1)Визначник -го порядку. Теорема Лапласа
- 2) . Різновиди рівняння прямої в просторі: канонічне, параметричні, за двома точками.
- 3) Похідні вищих порядків.
- 4) Знаходження екстремуму функції кількох змінних
- 3/Застосування правила Лопіталя у невизначеностях виду ; ; ; .
- 4. Невизначений інтеграл та його властивості.
- 5. Диференціальні рівняння другого порядку, що допускають пониження порядку
- 1. Основні поняття системи n лінійних алгебраїчних рівнянь з n змінними. Правило Крамера
- 2.Парабола: означення, рівняння, графік
- 3. Необхідна і достатня ознаки зростання (спадання) функції
- 4.Метод безпосереднього інтегрування невизначених інтегралів
- 5. Рівняння Бернуллі.
- Перший спосіб
- Другий спосіб
- 3. . Екстремум ф-ції, необхідна та достатня умови існування екстремуму.
- 5.Лінійними неоднорідними диф. Рівняннями 2го порядку зі сталими коефіцієнтами
- 1,Система лінійних алгебраїчних рівнянь (слар) — в лінійній алгебрі це система лінійних рівнянь виду:
- 2,Поняття границі функції
- 3, Необхідною умовою існування екстремуму в точці диференційовної функції є рівність нулю її похідної: .
- 4.Інтегрування функцій, які містять у знаменнику квадратний тричлен.
- 5. Поняття ряду. Збіжність ряду та його сума.
- 1.Основні поняття слар. Системи лінійних однорідних рівнянь.
- 4.Метод невизначених коефіцієнтів.
- 5.Властивості збіжних рядів.
- 1.Скалярний і векторний добуток. Властивості векторного добутку.
- 2.Теорема про зв'язок між нескінченно малими і нескінченно великими функціями.
- 3.Функції двох змінних. Область визначення.
- 4.Інтегрування функцій, що містять ірраціональності.
- 5.Необхідна ознака збіжності ряду.
- 5. Питання
- 2)Якщо в деякому околі точки Хо,крім можливо самой точки Хо, виконується нерівність 0 і кожна з ф-цій та має границю в точці Хо, то .
- 3) Нехай в деякому околі точки Хо,крім можливо самой точки Хо, виконується нерівність
- 1) ,2) ,3) , Якщо .
- 4. Визначений інтеграл та його властивості.
- 5. Радикальна ознака Коші.
- 1. Записати рівняння прямої, яка проходить через точку з кутовим коефіцієнтом .
- 2. Неперервність функції в точці: Застосування поняття неперервності при обчисленні границь функцій.
- 3. Градієнт функції .
- 4. Формула Ньютона-Лейбніца для обчислення визначених інтегралів.
- 5. Інтегральна ознака Коші.
- 22. 1. Кут між двома прямими заданими канонічним рівнянням. Умови паралельності і перпендикулярності прямих.
- 2. Властивості функцій, неперервних у точці.
- 23. 1. Рівняння прямої з кутовим коефіцієнтом.
- 2. Властивості функцій, неперервних на відрізку.
- 1. Матриці основні поняття. Різновиди матриць.
- Задачі, які приводять до поняття похідної: задача про продуктивність праці, задача про кутовий коефіцієнт дотичної.
- Загальна схема побудови графіка функції за допомогою похідної.
- Застосування визначеного інтеграла до обчислення площ фігур, обмежених лініями.
- 5. Степеневі ряди. Основні поняття. Теорема Абеля.
- Дії над матрицями. Властивості дій над матрицями.
- Означення похідної. Диференційовність та неперервність функції в точці і на проміжку.
- 5. Радіус, інтервал, область збіжності ряду.
- Визначники квадратних матриць. Способи обчислення визначників.
- Правила диференціювання сталої, суми, добутку, частки функцій, та наслідки з них.
- Екстремум функції, необхідна та достатня умови існування екстремуму.
- 5. Ряд Тейлора.
- Визначник -го порядку. Теорема Лапласа.
- 2.Геометричний зміст похідної. Рівняння дотичної. Поняття нормалі до графіка функції та її рівняння. Економічний зміст похідної.
- 3) Економічний зміст похідної: похідні V(X), d(X), p(X) дорівнюють маргінальній вартості, доходу та прибутку, відповідно.
- 3.Градієнт — це вектор з координатами , який характеризує напрям максимального зростання функції z - f(X,y) у точці р0 (х0, у0):
- 4.Невласний інтеграл іі роду.
- 5.Використання рядів до наближених обчислень функцій. Алгоритм наближеного обчислення функції f (X) в точці х0
- 1.Мінори та алгебраїчні доповнення елементів.
- 2.Похідна складної та оберненої функцій.
- 3.Частинні похідні вищих порядків. Теорема про рівність мішаних похідних.
- 4.Застосування визначеного інтеграла до обчислення площ фігур, обмежених лініями