1) ,2) ,3) , Якщо .
Якщо існує то для довільного натурального m =
Питання 3 . Повний приріст і повний диференціал функції двох змінних.
Нехай маємо функцію двох змінних z = f (x;y). Якщо х та у мають одночасно приріст Δх та Δу, то різницю f (x+Δx; y+Δу) – f(x;y) називають повним приростом функції і позначають Δz = f (x+Δx; y+Δу) – f(x;y)
Головна лінійна відносно Δх та Δу частина повного приросту функції називається повним диференціалом:
dz = f´x(x,y) Δх + f´y(x,y) Δу
Питання 4 Інтегрування найпростіших раціональних дробів.
Інтеграли від найпростіших раціональних дробів І-го та П-го типів знаходять методом безпосереднього інтегрування. При інтегруванні найпростішого дробу Ш-го типу треба спочат-ку в знаменнику виділити повний квадрат, а потім той вираз, що під квадратом, замінити через нову змінну. Інтеграл від найпростішого дробу типу IV шляхом повторного інтегрування частинами зводять до інтеграла від найпростішого дро-бу типуIII.
Питання 5 . Гранична ознака порівняння.
Якщо задано два ряди з додатними членами і , причому існує скінченна границя То ряди одночасно є або збіжними, або розбіжними.
19 БІЛЕТ
1. Вивести рівняння прямої, що проходить через дві точки і рівняння прямої у відрізках на осях.
Рівняння прямої,що проходить через дві точки
Відомі координати двох точок на прямій L: М (x ) та М .
М М (х )
Рівняння прямої у відрізках на осях
Відомо,що пряма L відсікає на осях координат відрізки довжиною а і в
Точки перетину прямої L з осями координат: М
де а – довжина відрізка на осі ОХ , а в- ОУ.
2. Розкриття невизначеностей вигляду при застосуванні ірраціональних функцій та многочленів під час обчислення границь функцій.
1) Невизначеність виду :
а)
б)
Для функцій, які мають границю на нескінченності, залишаються справедливі всі сформульовані теореми.
2) Невизначеність виду ,задана відношенням двох многочленів:
Поділимо чисельник і знаменник дробу на , одержимо:
Отже, щоб розкрити невизначеність виду , задану відношенням двох многочленів, потрібно чисельник і знаменник поділити на найвищий степінь x цих многочленів.
3) Невизначеність виду , задана відношенням двох многочленів:
Розкладемо чисельник і знаменник на множники і скоротимо дріб на спільний множник (x-1):
Скорочення на (х-1) можливе тому, що при означенні границі Тобто при
3. Використання повного диференціала до наближених обчислень.
При досить малому прирості х аргументу х диференційованої функції f(x) приріст у функції у буде близький за своєю величиною до диференціала функції. Тому приріст функції можна наближено прирівнювати до диференціала функції або ,
якщо позначити х = х - х0, то це ж рівняння приймає вигляд:
або . Таким чином, для значення де, близьких до х0, функцію f (x) наближено можна замінити лінійною функцією. Геометричне це заміні ділянки кривої y=f(x), прилеглої до точки (x0,f(x0), відрізком дотичної до кривої в цій точці: Беручи значення х0 = 0 і обмежуючись малими значеннями х, одержимо наближену формулу
Yandex.RTB R-A-252273-3
- 1 . Матриці, основні поняття
- 2 ) Різновиди рівняння площини у просторі:за трьома точками, у відрізках на осях, нормальне.
- 2)Рівняння площини, що проходить через задану точку перпендикулярно до заданого вектора. Загальне рівняння площини і його дослідження.
- 4)З означення диференціала функції випливає, що при достатньо малих і має місце наближена рівність
- 5) Диференціальні рівняння першого порядку. Основні поняття.
- 1) Визначники квадратних матриць. Способи обчислення визначників.
- 2) Кут між площинами. Умови паралельності і перпендикулярності двох площин.
- 4) Обчислення наближеного значення функції в точці за допомогою повного диференціала.
- 5) Диференціальні рівняння з відокремлюваннями змінними.
- 1)Визначник -го порядку. Теорема Лапласа
- 2) . Різновиди рівняння прямої в просторі: канонічне, параметричні, за двома точками.
- 3) Похідні вищих порядків.
- 4) Знаходження екстремуму функції кількох змінних
- 3/Застосування правила Лопіталя у невизначеностях виду ; ; ; .
- 4. Невизначений інтеграл та його властивості.
- 5. Диференціальні рівняння другого порядку, що допускають пониження порядку
- 1. Основні поняття системи n лінійних алгебраїчних рівнянь з n змінними. Правило Крамера
- 2.Парабола: означення, рівняння, графік
- 3. Необхідна і достатня ознаки зростання (спадання) функції
- 4.Метод безпосереднього інтегрування невизначених інтегралів
- 5. Рівняння Бернуллі.
- Перший спосіб
- Другий спосіб
- 3. . Екстремум ф-ції, необхідна та достатня умови існування екстремуму.
- 5.Лінійними неоднорідними диф. Рівняннями 2го порядку зі сталими коефіцієнтами
- 1,Система лінійних алгебраїчних рівнянь (слар) — в лінійній алгебрі це система лінійних рівнянь виду:
- 2,Поняття границі функції
- 3, Необхідною умовою існування екстремуму в точці диференційовної функції є рівність нулю її похідної: .
- 4.Інтегрування функцій, які містять у знаменнику квадратний тричлен.
- 5. Поняття ряду. Збіжність ряду та його сума.
- 1.Основні поняття слар. Системи лінійних однорідних рівнянь.
- 4.Метод невизначених коефіцієнтів.
- 5.Властивості збіжних рядів.
- 1.Скалярний і векторний добуток. Властивості векторного добутку.
- 2.Теорема про зв'язок між нескінченно малими і нескінченно великими функціями.
- 3.Функції двох змінних. Область визначення.
- 4.Інтегрування функцій, що містять ірраціональності.
- 5.Необхідна ознака збіжності ряду.
- 5. Питання
- 2)Якщо в деякому околі точки Хо,крім можливо самой точки Хо, виконується нерівність 0 і кожна з ф-цій та має границю в точці Хо, то .
- 3) Нехай в деякому околі точки Хо,крім можливо самой точки Хо, виконується нерівність
- 1) ,2) ,3) , Якщо .
- 4. Визначений інтеграл та його властивості.
- 5. Радикальна ознака Коші.
- 1. Записати рівняння прямої, яка проходить через точку з кутовим коефіцієнтом .
- 2. Неперервність функції в точці: Застосування поняття неперервності при обчисленні границь функцій.
- 3. Градієнт функції .
- 4. Формула Ньютона-Лейбніца для обчислення визначених інтегралів.
- 5. Інтегральна ознака Коші.
- 22. 1. Кут між двома прямими заданими канонічним рівнянням. Умови паралельності і перпендикулярності прямих.
- 2. Властивості функцій, неперервних у точці.
- 23. 1. Рівняння прямої з кутовим коефіцієнтом.
- 2. Властивості функцій, неперервних на відрізку.
- 1. Матриці основні поняття. Різновиди матриць.
- Задачі, які приводять до поняття похідної: задача про продуктивність праці, задача про кутовий коефіцієнт дотичної.
- Загальна схема побудови графіка функції за допомогою похідної.
- Застосування визначеного інтеграла до обчислення площ фігур, обмежених лініями.
- 5. Степеневі ряди. Основні поняття. Теорема Абеля.
- Дії над матрицями. Властивості дій над матрицями.
- Означення похідної. Диференційовність та неперервність функції в точці і на проміжку.
- 5. Радіус, інтервал, область збіжності ряду.
- Визначники квадратних матриць. Способи обчислення визначників.
- Правила диференціювання сталої, суми, добутку, частки функцій, та наслідки з них.
- Екстремум функції, необхідна та достатня умови існування екстремуму.
- 5. Ряд Тейлора.
- Визначник -го порядку. Теорема Лапласа.
- 2.Геометричний зміст похідної. Рівняння дотичної. Поняття нормалі до графіка функції та її рівняння. Економічний зміст похідної.
- 3) Економічний зміст похідної: похідні V(X), d(X), p(X) дорівнюють маргінальній вартості, доходу та прибутку, відповідно.
- 3.Градієнт — це вектор з координатами , який характеризує напрям максимального зростання функції z - f(X,y) у точці р0 (х0, у0):
- 4.Невласний інтеграл іі роду.
- 5.Використання рядів до наближених обчислень функцій. Алгоритм наближеного обчислення функції f (X) в точці х0
- 1.Мінори та алгебраїчні доповнення елементів.
- 2.Похідна складної та оберненої функцій.
- 3.Частинні похідні вищих порядків. Теорема про рівність мішаних похідних.
- 4.Застосування визначеного інтеграла до обчислення площ фігур, обмежених лініями