Частные производные и дифференцируемость функций нескольких переменных.
Пусть функция z=f(M) определена в некоторой окрестности точки М(x; у). Придадим переменной x в точке М произвольное приращение Δx, оставляя значение переменной y неизменным, т. Е. перейдем на плоскости от точки М (x; у) к точке M1 (x+ Δx; у). При этом Δx таково, что точка M1 лежит в указанной окрестности точки М. Тогда соответствующее приращение функции Δxz= f (x+ Δx; у)- f (x; у)
называется частным приращением функции по переменной x в точке М (х; у). Аналогично определяется частное приращение функции по переменной y Δyz= f (x; у+ Δy)- f (x; у).
Определение 1. Если существует предел
то он называется частной производной функции z=f(M) в точке М по переменной x (по переменной y) и обозначается одним из следующих символов:
Из определения следует, что частная производная функции двух переменных по переменной x представляет собой обыкновенную производную функции одной переменной x при фиксированном значении переменной y. Поэтому частные производные вычисляются по формулам и правилам вычисления производных функции одной переменной.
Определение 2. Полным приращением функции z=f(M) в точке М(x; y), соответствующим приращениям Δx и Δy переменных x и y, называется функция Δz= f (x+Δx; у+Δy)- f (x; у).
Определение 3. Функция z=f(M) называется дифференцируемой в точке M, если ее полное приращение в этой точке может быть представлено в виде
где A и B – некоторые не зависящие от Δx и Δy числа, а α(Δx; Δy)и β(Δx; Δy) – бесконечно малые при Δx→0, Δy→0 функции.
Известно, что если функция одной переменной дифференцируема в некоторой точке, то она непрерывна и имеет производную в этой точке. Из существования производной функции одной переменной в данной точке следует дифференцируемость функции в этой точке. Выясним, как переносятся эти свойства на функции двух переменных.
Теорема 1. Если функция z=f(M) дифференцируема в точке M, то она непрерывна в этой точке.
Теорема 2. Если функция z=f(M) дифференцируема в точке M(x; y), то она имеет в этой точке частные производныеи,причем
,
Однако в отличие от функции одной переменной, существования частных производных не достаточно для дифференцируемости функции.
Теорема 3 (Достаточное условие дифференцируемости функции). Если функция z=f(M) имеет частные производные в некоторой δ-окрестности точки M и эти производные непрерывны в самой точке M, то функция дифференцируема в точке M.
Лекция 27
- Учебная программа дисциплины
- 2. Данные о дисциплине:
- 1.7 Список литературы
- 1.8 Оценка знаний согласно шкале рейтинга
- 1.9 Политика и процедура
- Учебно-методические материалы по дисциплине
- 2.1 Тематический план курса
- 2.2 Тезисы лекционных занятий
- 2.3 Планы практических занятий
- Оценка участия в семинарах
- Содержание домашних заданий
- Оценка домашних заданий
- Содержание заданий для срсп
- Оценка заданий для срсп
- Матрицы и операции над ними.
- Определители и их свойства.
- Системы линейных алгебраических уравнений.
- Векторы. Линейные операции над векторами.
- Нелиейные операции над векторами. Метод координат
- Прямая на плоскости.
- Кривые 2-го порядка.
- Уравнение плоскости.
- Прямая в пространстве. Взаимное расположение прямой и плоскости в пространстве.
- Функция. Действительные числа. Предел функции. Односторонние пределы функции.
- Элементарные функции
- Предел функции. Основные теоремы о пределах
- Замечательные пределы. Сравнение бесконечно малых функций. Широко используются следующие два предела
- Непрерывность функции. Классификация точек разрыва функции.
- Производная. Правила и формулы дифференцирования.
- Производные высших порядков. Дифференциалы первого и высших порядков и их приложения.
- Основные теоремы дифференциального исчисления (Ферма, Ролля, Лагранжа, Коши). Правило Лопиталя. Приложения производной и исследование функции.
- Исследование поведения функции и построение их графиков.
- Выпуклость графика функции. Точки перегиба
- Асимтоты.
- Первообразная. Неопределенный интеграл и его свойства.
- Интегрирование рациональных функций.
- Интегрирование иррациональных и трансцендентных функций.
- Определенный интеграл. Условия существования определенного интеграла. Свойства определенного интеграла.
- Проведя в точках деления a,b прямые, параллельные оси ординат, разобьем криволинейную трапецию на n частичных трапеций. В каждом частичном интервале возьмем точки 1,2,…,т, так что
- Оценка интеграла. Теорема о среднем. Формула Ньютона-Лейбница. Замена переменных и интегрирование по частям в определенном интеграле.
- Приложения определенного интеграла.
- Частные производные и дифференцируемость функций нескольких переменных.
- Частные производные высших порядков
- Лекции 29. Дифференциальные уравнения. Дифференциальные уравнения I порядка.
- Линейные дифференциальные уравнения второго порядка. Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами.
- Числовые ряды.
- Признаки сходимости рядов
- Степенные ряды. Интервал сходимости степенного ряда. Разложение функций в степенные ряды.
- Свойства степенных рядов.
- Двойные и тройные интегралы.
- Векторные и скалярные поля
- Криволинейные интегралы
- Случайные события. Определение вероятности.
- Теоремы сложения и умножения вероятностей. Формула полной вероятности. Формула Байеса.
- Формула Бернулли. Предельные теоремы.
- Случайные величины и их числовые характеристики.
- Задачи математической статистики. Выборочный метод. Эмпирическая функция распределения. Полигон и гистограмма.
- Параметры распределения.
- Точечные и интервальные оценки.
- Элементы теории корреляции.
- Статистическая проверка статистических гипотез.