logo search
Математические методы в биологии

Нормальное распределение

В теории вероятностей и математической статистике важнейшую роль играет так называемое нормальное или гауссовское распределение. Значимость нормального распределения определяется тем, что оно служит хорошим приближением для большого числа наборов случайных величин, получаемых при наблюдениях и экспериментах. Нормальное распределение почти всегда имеет место, когда наблюдаемые случайные величины формируются под влиянием большого числа случайных факторов, ни один из которых существенно не превосходит остальные.

С другой стороны, нормальное распределение появляется как точное решение некоторых математических задач в рамках принятых моделей исследуемых явлений. Одно из первых таких решений, приводящие к нормальному закону распределения, были получены К. Гауссом при решении задач теории ошибок наблюдений и Дж. Максвеллом при учении распределения скоростей молекул в газе.

Функция носит название плотности нормального распределения, а ее интеграл называется нормальной функцией распределения.

Постоянная определена таким образом, чтобы вероятность попадания в случайный интервал от -∞<x<∞ была равна 1.

Постоянные μ (математическое ожидание) и σ2 (дисперсия) называются параметрами распределения.

Общим для всех кривых нормального распределения является то, что примерно 68, 95 и 99,7 % площади под ними лежат соответственно в пределах ±σ, ±2σ, ±3σ.