logo
Математические методы в биологии

Вопросы для самопроверки:

  1. Участники жеребьевки тянут из ящика жетоны с номерами от 1 до 100. Найти вероятность того, что номер первого наудачу извлеченного жетона не содержит цифры 5.

  2. При стрельбе по мишени вероятность сделать отличный вы­стрел равна 0,3, а вероятность выстрела на оценку «хорошо» рав­на 0,4. Какова вероятность получить за сделанный выстрел оценку не ниже «хорошо»?

  3. Вероятность того, что лицо умрет на 71-м году жизни, рав­на 0,04. Какова вероятность того, что человек не умрет на 71-м году?

  4. В урне 30 шаров: 15 белых, 10 красных и 5 синих. Какова вероятность вынуть цветной шар, если вынимается один шар?

  5. В урне 3 белых и 3 черных шара. Из урны дважды выни­мают по одному шару, не возвращая их обратно. Найти вероятность появления белого шара при втором испытании, если при первом испытании был извлечен черный шар.

  6. В колоде 36 карт. Наудачу вынимаются из колоды 2 кар­ты. Определить вероятность того, что вторым вынут туз, если первым тоже вынут туз.

  7. Пусть существует две лотереи: 5 из 36 и 31 из 36. Где вероятность выиграть больше?

  8. Два стрелка стреляют по цели. Вероятность поражения цели первым стрелком при одном выстреле равна 0,8, вторым стрел­ком — 0,7. Найти вероятность поражения цели двумя пулями в одном залпе.

  9. Студент М может заболеть гриппом (событие А) только в результате либо переохлаждения (событие В), либо контакта с другим больным (событие С). Требуется найти Р (А), если Р (В) = 0,5, Р (С) = 0,5, Рв (А) = 0,3, Рс (А) = 0,1 при условии не­совместимости В и С.

  10. Слово «керамит» составлено из букв разрезной азбуки. Затем карточки с буквами перемешиваются, и из них извлекаются по очереди четыре карточки. Какова вероятность, что эти четыре карточки в порядке выхода составят слово «река»?

  11. Вероятность получения желаемого результата в каждом опыте одинакова и равна 0,2. Опыты проводятся последовательно до получения желаемого результата. Определить вероятность того, что придется проводить пятый опыт.

  12. В ящике лежат 10 черных носков и 6 зеленых, все одного размера. Вы, не глядя, вытащили 3 носка, какова вероятность того, что образовалась хотя бы одна пара ?

13. Найти дисперсию и математическое ожидание дискретной случайной величины X, заданной законом распределения:

а)

X

4,3

5,1

10,6

p

0,2

0,3

0,5

б)

X

131

140

160

180

p

0,05

0,1

0,25

0,6

  1. В супе объемом 10л плавает 50 перчинок. С какой вероятностью в ложку объемом 0.01л попадет 1 перчинка.

  2. К случайной величине прибавили постоянную а. Как при этом изменятся ее а) математическое ожидание; б) дисперсия?

  3. Пусть вес пойманной рыбы подчиняется нормальному закону с параметрами: μ = 375 г, σ2= 25 г. Найти вероятность того, что вес пойманной рыбы будет от 300 до 425 г.

  4. Диаметр детали, изготовленной цехом, является случайной величиной, распределенной по нормальному закону. Дисперсия ее равна 0,0001, а математическое ожидание — 2,5 см. Найти границы, в которых с вероятностью 0,9973 заключен диаметр науда­чу взятой детали.

  5. Принимая вероятности рождения мальчика и девочки одина­ковыми, найти вероятность того, что среди 4 новорожденных 2 мальчика.

  6. Производится 10 независимых испытаний, в каждом из ко­торых вероятность появления события А равна 0,6. Найти диспер­сию случайной величины X — числа появлений события А в этих испытаниях.