Показатели асимметрии и эксцесса
При анализе распределения численностей значительный интерес представляет оценка отклонения данного распределения от симметричного, или, иначе говоря, его скошенность. Степень скошенности (асимметрия) является одним из наиболее важных свойств распределения численностей. Существует целый ряд статистических показателей, предназначенных для вычисления асимметрии. Все они отвечают, как минимум, двум требованиям, предъявляемым к любому показателю скошенности: он должен быть безразмерным и равным нулю, если распределение симметрично.
Из этой формулы следует, что распределения, скошенные влево, имеют положительную асимметрию, а скошенные вправо — отрицательную. Естественно, что для симметричных распределений, для которых среднее и медиана совпадают, асимметрия равна нулю.
Известно, что величина As, определяемая по формуле, находится в интервале [-3,3]. Но практически эта величина очень редко достигает своих крайних значений, и для умеренно асимметричных одновершинных распределений она по модулю обычно меньше единицы.
Показатель асимметрии может быть использован не только для формального описания распределения численностей, но и для содержательной интерпретации полученных данных.
В самом деле, если наблюдаемый нами признак формируется под воздействием большого числа независимых друг от друга причин, каждая из которых вносит относительно небольшой вклад в величину этого признака, то в соответствии с некоторыми теоретическими предпосылками, обсуждавшимися в разделе по теории вероятностей, вправе ожидать, что получаемое в результате эксперимента распределение численностей будет симметричным. Однако если для экспериментальных данных получена значительная величина асимметрии (большая по абсолютной величине, чем 0,5), то можно предположить, что условия, указанные выше, не соблюдаются.
В этом случае имеет смысл предположить либо существование какого-то одного или двух факторов, вклад которых в формирование наблюдаемой в эксперименте величины существенно больше, чем остальных, либо постулировать наличие специального механизма, отличного от механизма независимого влияния множества причин на величину наблюдаемого признака.
Так, например, если изменения интересующей нас величины, соответствующие действию некоторого фактора, пропорциональны самой этой величине и интенсивности действия причины, то получаемое при этом распределение будет всегда скошено влево, иметь положительную асимметрию. С таким механизмом сталкиваются, например, биологи, оценивая величины, связанные с ростом растений и животных.
Другой способ оценки асимметрии основан на методе моментов.
.
Таким образом, мера скошенности представляет собой среднее значение стандартизованных данных, возведенных в куб.
Показатели асимметрии, вычисленные по разным формулам, отличаются друг от друга по величине, но одинаково указывают на характер скошенности. В пакетах прикладных программ для статистического анализа при расчете асимметрии используют последнюю формулу.
- Введение
- Раздел I. Введение в теорию вероятностей
- Понятие о случайном событии
- Классическое определение вероятности
- Относительная частота. Статистическое определение вероятности.
- Геометрическая вероятность
- Свойства вероятностей Сложение вероятностей несовместимых событий
- Умножение вероятностей
- Сложение вероятностей совместимых событий
- Формула полной вероятности
- Основные формулы комбинаторики
- Дискретные и непрерывные случайные величины. Понятие «случайные величины»
- Закон распределения случайной величины
- Теоретические распределения вероятностей
- Биномиальное распределение
- Распределение Пуассона
- Числовые характеристики дискретных случайных величин
- Нормальное распределение
- Вопросы для самопроверки:
- Раздел II. Основные понятия и термины биологической статистики Генеральная совокупность и выборка
- Непреднамеренный отбор. Метод последовательных номеров. Случайный и механический методы отбора
- Признаки и показатели
- Правила ранжирования
- Способы группировки первичных данных.
- Схемы (модели) научного исследования
- Однофакторная и многофакторная модель Контрольные и экспериментальные группы
- Метод автоконтроля
- Метод дублирования
- Метод последовательного пополнения групп
- Численность контрольных и экспериментальных групп
- Научные гипотезы
- Направленные гипотезы
- Статистические критерии
- Параметрические критерии
- Непараметрические критерии
- Уровни статистической значимости
- 1 Рода.
- Вопросы для самопроверки
- Раздел III. Статистические методы обработки экспериментальных данных
- Проверка гипотезы о законе распределения
- Χ2 Пирсона
- Описательные статистики Концепция сжатия экспериментальных данных
- Показатели центральной тенденции. Средние.
- Медиана
- Персентили
- Показатели изменчивости
- Стандартизованные данные
- Показатели асимметрии и эксцесса
- Эксцесс
- Работа с качественными переменными Количественная оценка результатов эксперимента.
- Вопросы для самопроверки:
- Сравнение двух независимых групп т критерий Стьюдента
- Критерии согласия для дисперсий
- U критерий Маана-Уитни
- Сравнение качественных признаков Критерий χ2
- Сравнение долей
- Точный тест Фишера
- Сравнение более двух независимых групп Однофакторный дисперсионный анализ Фишера
- Критерий Краскела-Уоллиса
- Сравнение двух зависимых групп Парный т критерий Стьюдента
- Парный критерий т – Вилкоксона
- Критерий x2r Фридмана
- Тест Мак-Немара
- Корреляционный анализ
- Вычисление и интерпретация параметров парной линейной корреляции
- Условия применения и ограничения корреляционно анализа
- Вычисление и интерпретация параметров парной линейной корреляции
- Измерение связи количественных признаков
- Измерение связи порядковых признаков
- Измерение связи номинальных признаков
- Относительный риск. Отношение шансов
- Статистическая оценка надежности параметров парной корреляции
- Частная корреляция
- Факторный анализ
- Вопросы для самопроверки:
- Регрессионный анализ
- Метод наименьших квадратов
- Выбор формы функциональной зависимости
- Применение парного линейного уравнения регрессии
- Корреляционно-регрессионные модели (крм) и их применение в анализе и прогнозе.
- Логистическая регрессия
- Анализ динамических изменений Применение метода наименьших квадратов при исследовании тенденции развития
- Анализ циклических изменений
- Метод обычных средних
- Метод корригирования средних
- Метод отношения фактических данных
- Ошибки, допускаемые при количественной характеристике сезонных колебаний
- Кластерный анализ
- Иерархическое дерево
- Меры расстояния
- Правила объединения или связи
- Метод k средних
- Выбор между параметрическими и непараметрическими тестами: легкая ситуация.
- Выбор между параметрическими и непараметрическими тестами: сложные случаи.
- Выбор между параметрическим и непараметрическим тестом: насколько это на самом деле влияет на результат?
- Одно или двухсторонняя p-оценка?
- Парный или непарный тест?
- Тест Фишера или хи-квадрат?
- Регрессия или корреляция?
- Вопросы для самопроверки:
- Раздел IV. Работа с программой easystatistics Общие сведения о программе EasyStatistics
- Создание новой базы данных
- Работа с файлами
- Копирование и вставка данных
- Работа с фильтрами
- Работа с переменными и строками
- Статистические методы Описательные статистики
- Частотный анализ
- Сравнение независимых выборок
- Сравнение связанных выборок
- Дисперсионный анализ
- Корреляционный анализ
- Множественная регрессия
- Проверка типа распределения эмпирических данных
- Вероятностный калькулятор
- Задания для самостоятельной работы с программой
- Список рекомендуемой литературы
- Граничные (критические) значения 2-критерия, соответствующие разным вероятностям допустимой ошибки и разным степеням свободы
- Критические значения коэффициентов корреляции для различных степеней свободы (n - 2) и разных вероятностей допустимых ошибок