logo
Математические методы в биологии

Описательные статистики Концепция сжатия экспериментальных данных

Графическое представление всей совокупности экспериментальных данных позволяет многими способами осмыслить длинные ряды наблюдений. Тем не менее, построение графиков и таблиц представляет собой только первый шаг при статистическом анализе данных. Следующий шаг — представление результатов в компактной форме, удобной для хранения, сопоставления с другими данными и т. д. При этом желательно, чтобы характерные особенности распределения численностей выражались небольшим числом показателей.

Графические представления распределения численностей, рассмотренные нами ранее, очень существенно отличаются друг от друга. Однако у всех этих графиков существуют и общие характерные особенности, которые позволяют их сравнивать между coбой.

Прежде всего, видно, что все распределения группируются относительно некоторого центра. Для измерения положения этого центра существует группа показателей, носящих название мер центральной тенденции. К ним относятся средние (среднее арифметически среднее геометрическое, среднее гармоническое), мода и медиана.

Другой характерной особенностью распределений численностей является разброс экспериментальных значений относительно центра распределения. Количественная оценка этого разброса осуществляется с помощью мер рассеяния, важнейшими из которых являются размах, дисперсия, среднеквадратическое отклонение и коэффициент вариации.

Визуальный анализ графических изображений показывает, что некоторые распределения асимметричны, т. е. по обе стороны от центра расположено неравное количество значений, причем асимметрия может быть как право-, так и левосторонней. Наконец, графики некоторых распределений более заострены, а других — уплощены. Эти характерные особенности распределений экспериментальных данных — скошенность и островершинность — также могут быть описаны с помощью показателей асимметрии и эксцесса (островершинности).

Оказывается, что для описания практически любого встречающегося на практике распределения численностей достаточно этих четырех групп мер: показателей центральной тенденции, показателей рассеяния (вариации), показателей асимметрии, показателей эксцесса, вся совокупность которых получила название «статистик свертки».