logo
Математические методы в биологии

1 Рода.

Вероятность такой ошибки обычно обозначается как α. В сущно­сти, мы должны были бы указывать в скобках не р<0,05 или р<0,01, а α<0,05 или α<0,01. В некоторых руководствах так и делается (Рунион Р., 1982; Захаров В.П., 1985 и др.).

Если вероятность ошибки - это α, то вероятность правильного решения: 1—α. Чем меньше α, тем больше вероятность правильного решения.

Исторически сложилось так, что принято считать низшим уровнем статистической значимости 5%-ый уровень (р≤0,05): достаточным – 1%-ый уровень (р≤0,01) и высшим 0,1%-ый уровень (р≤0,001), поэтому в таблицах критических значений обычно приводятся значения критериев, соответствующих уровням статистической зна­чимости р≤0,05 и р≤0,01, иногда - р≤0,001. Для некоторых критериев в таблицах указан точный уровень значимости их разных эмпирических значений. Например, для φ*=1,56 р=О,06.

До тех пор, однако, пока уровень статистической значимости не достигнет р=0,05, мы еще не имеем права отклонить нулевую гипотезу.

Мощность критерия - это его способность выявлять различия, если они есть. Иными словами, это его способность отклонить нулевую гипотезу об отсутствии различий, если она неверна.

Ошибка, состоящая в том, что мы приняли нулевую гипотезу, в то время как она неверна, называется ошибкой II рода.

Вероятность такой ошибки обозначается как β. Мощность крите­рия - это его способность не допустить ошибку II рода, поэтому:

Мощность=1—β

Мощность критерия определяется эмпирическим путем. Одни и те же задачи могут быть решены с помощью разных критериев, при этом обнаруживается, что некоторые критерии позволяют выявить раз­личия там, где другие оказываются неспособными это сделать, или вы­являют более высокий уровень значимости различий. Возникает вопрос: а зачем же тогда использовать менее мощные критерии? Дело в том, что основанием для выбора критерия может быть не только мощность, но и другие его характеристики, а именно:

а)простота;

б)более широкий диапазон использования (например, по отношению к данным, определенным по номинальной шкале, или по отношению к большим n);

в)применимость по отношению к неравным по объему выборкам;

г)большая информативность результатов.