logo
Математические методы в биологии

Статистические критерии

Статистический критерий - это решающее правило, обеспечиваю­щее надежное поведение, то есть принятие истинной и отклонение ложной гипотезы с высокой вероятностью.

Статистические критерии обозначают также метод расчета опре­деленного числа и само это число.

Когда мы говорим, что достоверность различий определялась по критерию X2, то имеем в виду, что использовали метод X2 для расчета определенного числа.

Когда мы говорим, далее, что X2 = 12,676, то имеем в виду опре­деленное число, рассчитанное по методу X2. Это число обозначается как эмпирическое значение критерия.

По соотношению эмпирического и критического значений крите­рия мы можем судить о том, подтверждается ли или опровергается ну­левая гипотеза. Например, если X2эмп > X2кр., то Н0 отвергается.

В большинстве случаев для того, чтобы мы признали различия значимыми, необходимо, чтобы эмпирическое значение критерия пре­вышало критическое, хотя есть критерии (например, критерий Манна-Уитни или критерий знаков), в которых мы должны придерживаться противоположного правила.

Эти правила оговариваются в описании каждого из представлен­ных в руководстве критериев.

В некоторых случаях расчетная формула критерия включает в се­бя количество наблюдений в исследуемой выборке, обозначаемое как п. В этом случае эмпирическое значение критерия одновременно является тестом для проверки статистических гипотез. По специальной таблице мы определяем, какому уровню статистической значимости различий соответствует данная эмпирическая величина. Примером такого крите­рия является критерий φ*, вычисляемый на основе углового преобразо­вания Фишера.

В большинстве случаев, однако, одно и то же эмпирическое зна­чение критерия может оказаться значимым или незначимым в зависи­мости от количества наблюдений в исследуемой выборке (n) или от так называемого количества степеней свободы, которое обозначается как ν или как df.

Число степеней свободы равно числу классов вариационного ряда минус число условий, при которых он был сформирован. К числу таких условий относятся объем выборки (n), средние и дисперсии.

Если мы расклассифицировали наблюдения по классам какой-либо номинативной шкалы и подсчитали количество наблюдений в каж­дой ячейке классификации, то мы получаем так называемый частотный вариационный ряд. Единственное условие, которое соблюдается при его формировании - объем выборки п. Допустим, у нас 3 класса: "Умеет работать на компьютере - умеет выполнять лишь определенные опера­ции - не умеет работать на компьютере". Выборка состоит из 50 чело­век. Если в первый класс отнесены 20 испытуемых, во второй - тоже 20, то в третьем классе должны оказаться все остальные 10 испытуе­мых. Мы ограничены одним условием - объемом выборки. Поэтому даже если мы потеряли данные о том, сколько человек не умеют рабо­тать на компьютере, мы можем определить это, зная, что в первом и втором классах - по 20 испытуемых. Мы не свободны в определении количества испытуемых в третьем- разряде, "свобода" простирается только на первые две ячейки классификации:

df = c-l = 3- 1 = 2

Аналогичным образом, если бы у нас была классификация из 10 разрядов, то мы были бы свободны только в 9 из них, если бы у нас было 100 классов - то в 99 из них и т. д.

Способы более сложного подсчета числа степеней свободы при двухмерных классификациях приведены в разделах, посвященных кри­терию χ2 и дисперсионному анализу.

Зная п и/или число степеней свободы, мы по специальным таб­лицам можем определить критические значения критерия и сопоставить с ними полученное эмпирическое значение. Обычно это записывается так: "при n=22 критические значения критерия составляют ..." или "при v=2 критические значения критерия составляют ..." и т.п.

Критерии делятся на параметрические и непараметрические.

Параметрические критерии

Критерии, включающие в формулу расчета параметры распределения, то есть средние и дисперсии (/-критерий Стьюдента, критерий F и др.)

Непараметрические критерия

Критерии, не включающие в формулу расчета параметров распределе­ния и основанные на оперировании частотами или рангами (критерий Q Розенбаума, критерий Т Вилкоксона и др.)

Возможности и ограничения параметрических и непараметрических критериев