Статистические критерии
Статистический критерий - это решающее правило, обеспечивающее надежное поведение, то есть принятие истинной и отклонение ложной гипотезы с высокой вероятностью.
Статистические критерии обозначают также метод расчета определенного числа и само это число.
Когда мы говорим, что достоверность различий определялась по критерию X2, то имеем в виду, что использовали метод X2 для расчета определенного числа.
Когда мы говорим, далее, что X2 = 12,676, то имеем в виду определенное число, рассчитанное по методу X2. Это число обозначается как эмпирическое значение критерия.
По соотношению эмпирического и критического значений критерия мы можем судить о том, подтверждается ли или опровергается нулевая гипотеза. Например, если X2эмп > X2кр., то Н0 отвергается.
В большинстве случаев для того, чтобы мы признали различия значимыми, необходимо, чтобы эмпирическое значение критерия превышало критическое, хотя есть критерии (например, критерий Манна-Уитни или критерий знаков), в которых мы должны придерживаться противоположного правила.
Эти правила оговариваются в описании каждого из представленных в руководстве критериев.
В некоторых случаях расчетная формула критерия включает в себя количество наблюдений в исследуемой выборке, обозначаемое как п. В этом случае эмпирическое значение критерия одновременно является тестом для проверки статистических гипотез. По специальной таблице мы определяем, какому уровню статистической значимости различий соответствует данная эмпирическая величина. Примером такого критерия является критерий φ*, вычисляемый на основе углового преобразования Фишера.
В большинстве случаев, однако, одно и то же эмпирическое значение критерия может оказаться значимым или незначимым в зависимости от количества наблюдений в исследуемой выборке (n) или от так называемого количества степеней свободы, которое обозначается как ν или как df.
Число степеней свободы равно числу классов вариационного ряда минус число условий, при которых он был сформирован. К числу таких условий относятся объем выборки (n), средние и дисперсии.
Если мы расклассифицировали наблюдения по классам какой-либо номинативной шкалы и подсчитали количество наблюдений в каждой ячейке классификации, то мы получаем так называемый частотный вариационный ряд. Единственное условие, которое соблюдается при его формировании - объем выборки п. Допустим, у нас 3 класса: "Умеет работать на компьютере - умеет выполнять лишь определенные операции - не умеет работать на компьютере". Выборка состоит из 50 человек. Если в первый класс отнесены 20 испытуемых, во второй - тоже 20, то в третьем классе должны оказаться все остальные 10 испытуемых. Мы ограничены одним условием - объемом выборки. Поэтому даже если мы потеряли данные о том, сколько человек не умеют работать на компьютере, мы можем определить это, зная, что в первом и втором классах - по 20 испытуемых. Мы не свободны в определении количества испытуемых в третьем- разряде, "свобода" простирается только на первые две ячейки классификации:
df = c-l = 3- 1 = 2
Аналогичным образом, если бы у нас была классификация из 10 разрядов, то мы были бы свободны только в 9 из них, если бы у нас было 100 классов - то в 99 из них и т. д.
Способы более сложного подсчета числа степеней свободы при двухмерных классификациях приведены в разделах, посвященных критерию χ2 и дисперсионному анализу.
Зная п и/или число степеней свободы, мы по специальным таблицам можем определить критические значения критерия и сопоставить с ними полученное эмпирическое значение. Обычно это записывается так: "при n=22 критические значения критерия составляют ..." или "при v=2 критические значения критерия составляют ..." и т.п.
Критерии делятся на параметрические и непараметрические.
Параметрические критерии
Критерии, включающие в формулу расчета параметры распределения, то есть средние и дисперсии (/-критерий Стьюдента, критерий F и др.)
Непараметрические критерия
Критерии, не включающие в формулу расчета параметров распределения и основанные на оперировании частотами или рангами (критерий Q Розенбаума, критерий Т Вилкоксона и др.)
Возможности и ограничения параметрических и непараметрических критериев
- Введение
- Раздел I. Введение в теорию вероятностей
- Понятие о случайном событии
- Классическое определение вероятности
- Относительная частота. Статистическое определение вероятности.
- Геометрическая вероятность
- Свойства вероятностей Сложение вероятностей несовместимых событий
- Умножение вероятностей
- Сложение вероятностей совместимых событий
- Формула полной вероятности
- Основные формулы комбинаторики
- Дискретные и непрерывные случайные величины. Понятие «случайные величины»
- Закон распределения случайной величины
- Теоретические распределения вероятностей
- Биномиальное распределение
- Распределение Пуассона
- Числовые характеристики дискретных случайных величин
- Нормальное распределение
- Вопросы для самопроверки:
- Раздел II. Основные понятия и термины биологической статистики Генеральная совокупность и выборка
- Непреднамеренный отбор. Метод последовательных номеров. Случайный и механический методы отбора
- Признаки и показатели
- Правила ранжирования
- Способы группировки первичных данных.
- Схемы (модели) научного исследования
- Однофакторная и многофакторная модель Контрольные и экспериментальные группы
- Метод автоконтроля
- Метод дублирования
- Метод последовательного пополнения групп
- Численность контрольных и экспериментальных групп
- Научные гипотезы
- Направленные гипотезы
- Статистические критерии
- Параметрические критерии
- Непараметрические критерии
- Уровни статистической значимости
- 1 Рода.
- Вопросы для самопроверки
- Раздел III. Статистические методы обработки экспериментальных данных
- Проверка гипотезы о законе распределения
- Χ2 Пирсона
- Описательные статистики Концепция сжатия экспериментальных данных
- Показатели центральной тенденции. Средние.
- Медиана
- Персентили
- Показатели изменчивости
- Стандартизованные данные
- Показатели асимметрии и эксцесса
- Эксцесс
- Работа с качественными переменными Количественная оценка результатов эксперимента.
- Вопросы для самопроверки:
- Сравнение двух независимых групп т критерий Стьюдента
- Критерии согласия для дисперсий
- U критерий Маана-Уитни
- Сравнение качественных признаков Критерий χ2
- Сравнение долей
- Точный тест Фишера
- Сравнение более двух независимых групп Однофакторный дисперсионный анализ Фишера
- Критерий Краскела-Уоллиса
- Сравнение двух зависимых групп Парный т критерий Стьюдента
- Парный критерий т – Вилкоксона
- Критерий x2r Фридмана
- Тест Мак-Немара
- Корреляционный анализ
- Вычисление и интерпретация параметров парной линейной корреляции
- Условия применения и ограничения корреляционно анализа
- Вычисление и интерпретация параметров парной линейной корреляции
- Измерение связи количественных признаков
- Измерение связи порядковых признаков
- Измерение связи номинальных признаков
- Относительный риск. Отношение шансов
- Статистическая оценка надежности параметров парной корреляции
- Частная корреляция
- Факторный анализ
- Вопросы для самопроверки:
- Регрессионный анализ
- Метод наименьших квадратов
- Выбор формы функциональной зависимости
- Применение парного линейного уравнения регрессии
- Корреляционно-регрессионные модели (крм) и их применение в анализе и прогнозе.
- Логистическая регрессия
- Анализ динамических изменений Применение метода наименьших квадратов при исследовании тенденции развития
- Анализ циклических изменений
- Метод обычных средних
- Метод корригирования средних
- Метод отношения фактических данных
- Ошибки, допускаемые при количественной характеристике сезонных колебаний
- Кластерный анализ
- Иерархическое дерево
- Меры расстояния
- Правила объединения или связи
- Метод k средних
- Выбор между параметрическими и непараметрическими тестами: легкая ситуация.
- Выбор между параметрическими и непараметрическими тестами: сложные случаи.
- Выбор между параметрическим и непараметрическим тестом: насколько это на самом деле влияет на результат?
- Одно или двухсторонняя p-оценка?
- Парный или непарный тест?
- Тест Фишера или хи-квадрат?
- Регрессия или корреляция?
- Вопросы для самопроверки:
- Раздел IV. Работа с программой easystatistics Общие сведения о программе EasyStatistics
- Создание новой базы данных
- Работа с файлами
- Копирование и вставка данных
- Работа с фильтрами
- Работа с переменными и строками
- Статистические методы Описательные статистики
- Частотный анализ
- Сравнение независимых выборок
- Сравнение связанных выборок
- Дисперсионный анализ
- Корреляционный анализ
- Множественная регрессия
- Проверка типа распределения эмпирических данных
- Вероятностный калькулятор
- Задания для самостоятельной работы с программой
- Список рекомендуемой литературы
- Граничные (критические) значения 2-критерия, соответствующие разным вероятностям допустимой ошибки и разным степеням свободы
- Критические значения коэффициентов корреляции для различных степеней свободы (n - 2) и разных вероятностей допустимых ошибок