Граничные (критические) значения 2-критерия, соответствующие разным вероятностям допустимой ошибки и разным степеням свободы
Число степеней свободы (m-1) | Вероятность допустимой ошибки | ||
0,05 | 0,01 | 0,001 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | 3,84 5,99 7,81 9,49 11,07 12,59 14,07 15,51 16,92 18,31 19,68 21,03 22,36 23,68 25,00 | 6,64 9,21 11,34 13,28 15,09 16,81 18,48 20,09 21,67 23,21 24.72 26,05 27,69 29,14 30,58 | 10,83 13,82 16,27 18,46 20,52 22,46 24,32 26,12 27.88 29,59 31,26 32,91 34,53 36,12 37,70 |
Приложение 3
Граничные значения F-критерия для вероятности допустимой ошибки 0,05 и числа степеней свободы n1 и n2
n2 n1 | 3 | 4 | 5 | 6 | 8 | 12 | 16 | 24 | 50 |
3 | 9,28 | 9,91 | 9,01 | 8,94 | 8,84 | 8,74 | 8,69 | 8,64 | 8,58 |
4 | 6,59 | 6,39 | 6,26 | 6,16 | 6,04 | 5,91 | 5,84 | 5,77 | 5,70 |
5 | 5,41 | 5,19 | 5,05 | 4,95 | 4,82 | 4,68 | 4,60 | 4,58 | 4,44 |
6 | 4,76 | 4,53 | 4,39 | 4,28 | 4,15 | 4,00 | 3,92 | 3,84 | 3,75 |
8 | 4,07 | 3,84 | 3,69 | 3,58 | 3,44 | 3,28 | 3,20 | 3,12 | 3,03 |
12 | 3,49 | 3,26 | 3,11 | 3,00 | 2,85 | 2,69 | 2,60 | 2,50 | 2,40 |
16 | 3,24 | 3,0 | 2,85 | 2,74 | 2,59 | 2,42 | 2,33 | 2,24 | 2,13 |
24 | 3,01 | 2,78 | 2,62 | 2,51 | 2,36 | 2,18 | 2,09 | 1,98 | 1,86 |
50 | 2,79 | 2,56 | 2,40 | 2,29 | 2,13 | 1,95 | 1,85 | 1,74 | 1,60 |
Приложение 4
- Введение
- Раздел I. Введение в теорию вероятностей
- Понятие о случайном событии
- Классическое определение вероятности
- Относительная частота. Статистическое определение вероятности.
- Геометрическая вероятность
- Свойства вероятностей Сложение вероятностей несовместимых событий
- Умножение вероятностей
- Сложение вероятностей совместимых событий
- Формула полной вероятности
- Основные формулы комбинаторики
- Дискретные и непрерывные случайные величины. Понятие «случайные величины»
- Закон распределения случайной величины
- Теоретические распределения вероятностей
- Биномиальное распределение
- Распределение Пуассона
- Числовые характеристики дискретных случайных величин
- Нормальное распределение
- Вопросы для самопроверки:
- Раздел II. Основные понятия и термины биологической статистики Генеральная совокупность и выборка
- Непреднамеренный отбор. Метод последовательных номеров. Случайный и механический методы отбора
- Признаки и показатели
- Правила ранжирования
- Способы группировки первичных данных.
- Схемы (модели) научного исследования
- Однофакторная и многофакторная модель Контрольные и экспериментальные группы
- Метод автоконтроля
- Метод дублирования
- Метод последовательного пополнения групп
- Численность контрольных и экспериментальных групп
- Научные гипотезы
- Направленные гипотезы
- Статистические критерии
- Параметрические критерии
- Непараметрические критерии
- Уровни статистической значимости
- 1 Рода.
- Вопросы для самопроверки
- Раздел III. Статистические методы обработки экспериментальных данных
- Проверка гипотезы о законе распределения
- Χ2 Пирсона
- Описательные статистики Концепция сжатия экспериментальных данных
- Показатели центральной тенденции. Средние.
- Медиана
- Персентили
- Показатели изменчивости
- Стандартизованные данные
- Показатели асимметрии и эксцесса
- Эксцесс
- Работа с качественными переменными Количественная оценка результатов эксперимента.
- Вопросы для самопроверки:
- Сравнение двух независимых групп т критерий Стьюдента
- Критерии согласия для дисперсий
- U критерий Маана-Уитни
- Сравнение качественных признаков Критерий χ2
- Сравнение долей
- Точный тест Фишера
- Сравнение более двух независимых групп Однофакторный дисперсионный анализ Фишера
- Критерий Краскела-Уоллиса
- Сравнение двух зависимых групп Парный т критерий Стьюдента
- Парный критерий т – Вилкоксона
- Критерий x2r Фридмана
- Тест Мак-Немара
- Корреляционный анализ
- Вычисление и интерпретация параметров парной линейной корреляции
- Условия применения и ограничения корреляционно анализа
- Вычисление и интерпретация параметров парной линейной корреляции
- Измерение связи количественных признаков
- Измерение связи порядковых признаков
- Измерение связи номинальных признаков
- Относительный риск. Отношение шансов
- Статистическая оценка надежности параметров парной корреляции
- Частная корреляция
- Факторный анализ
- Вопросы для самопроверки:
- Регрессионный анализ
- Метод наименьших квадратов
- Выбор формы функциональной зависимости
- Применение парного линейного уравнения регрессии
- Корреляционно-регрессионные модели (крм) и их применение в анализе и прогнозе.
- Логистическая регрессия
- Анализ динамических изменений Применение метода наименьших квадратов при исследовании тенденции развития
- Анализ циклических изменений
- Метод обычных средних
- Метод корригирования средних
- Метод отношения фактических данных
- Ошибки, допускаемые при количественной характеристике сезонных колебаний
- Кластерный анализ
- Иерархическое дерево
- Меры расстояния
- Правила объединения или связи
- Метод k средних
- Выбор между параметрическими и непараметрическими тестами: легкая ситуация.
- Выбор между параметрическими и непараметрическими тестами: сложные случаи.
- Выбор между параметрическим и непараметрическим тестом: насколько это на самом деле влияет на результат?
- Одно или двухсторонняя p-оценка?
- Парный или непарный тест?
- Тест Фишера или хи-квадрат?
- Регрессия или корреляция?
- Вопросы для самопроверки:
- Раздел IV. Работа с программой easystatistics Общие сведения о программе EasyStatistics
- Создание новой базы данных
- Работа с файлами
- Копирование и вставка данных
- Работа с фильтрами
- Работа с переменными и строками
- Статистические методы Описательные статистики
- Частотный анализ
- Сравнение независимых выборок
- Сравнение связанных выборок
- Дисперсионный анализ
- Корреляционный анализ
- Множественная регрессия
- Проверка типа распределения эмпирических данных
- Вероятностный калькулятор
- Задания для самостоятельной работы с программой
- Список рекомендуемой литературы
- Граничные (критические) значения 2-критерия, соответствующие разным вероятностям допустимой ошибки и разным степеням свободы
- Критические значения коэффициентов корреляции для различных степеней свободы (n - 2) и разных вероятностей допустимых ошибок