Логистическая регрессия
При изучении линейной регрессии мы исследуем модели вида:
Y =a + b1*x1 + b2*x2 + …+bq * xq + e.
Здесь зависимая переменная Y является непрерывной, и мы определяем набор независимых переменных xi и коэффициенты при них bi, которые позволили бы нам предсказывать среднее значение Y с учетом наблюдаемой ее изменчивости.
Во многих ситуациях, однако, Y не является непрерывной величиной, а принимает всего два возможных значения . Обычно единицей в этом случае представляеют осуществления какого-либо события (успех), а нулем - отсутствие его реализации ( неуспех).
Среднее значение Y - обозначенное через p, есть доля случаев, в которых Y принимает значение 1. Математически это можно записать как:
p = P(Y=1) или,
p = P("Успех")
В этом случае нам хотелось бы уметь оценивать величину p и определять факторы (независимые переменные xi (непрерывные), которые влияют на переменную Y.
Вероятно, первой попыткой было бы опробование модели вида
p = a + b1 * x1. (2)
(Мы для простоты рассматриваем уравнение для одной независимой переменной).
В принципе это та же стандартная линейная регрессионная модель в которой Y - зависимая непрерывная переменная заменена на вероятность p. Однако, исследование такой модели показывает ее непригодность, поскольку p - вероятность и ее значения ограничиваются интервалом (0,1), а правая часть уравнения, напротив, может иметь значения , лежащие вне указанного выше интервала.
Можно попробовать применить модель вида
p = e a + b1 * x1
Это уравнение гарантирует, что оценки для p будут положительными. Однако, изучая модель, мы бы скоро осознали, что и эта модель не пригодна. В самом деле, правая часть уравнения может давать значения большие единицы.
Для устранения этого ограничения нам нужно применить модель вида
P = e a + b1 * x1 /(1 + e a + b1 * x1 )
Выражение, стоящее справа от знака равенства, называется логистической функцией. Она не может принимать как отрицательные значения, так и значения большие единицы, и, следовательно, ограничивает оценки для p требуемым интервалом.
Несложные математические преобразования позволяют от уравнения перейти к уравнению:
ln[ p / (1 - p)] = a + b1 * x1
По определению величина p / (1 - p) представляет собой "шансы успеха". По этой причине моделирование p с помощью логистической функции эквивалентно использованию линейной регрессионной модели, в которой непрерывная переменная Y заменена логарифмом от "шансов успеха", то есть мы полагаем, что зависимость между ln[ p / (1 - p)] и x1 линейная.
Для оценки статистической значимости всего уравнения в целом, с помощью метода правдоподобия вычисляется статистика χ2.
- Введение
- Раздел I. Введение в теорию вероятностей
- Понятие о случайном событии
- Классическое определение вероятности
- Относительная частота. Статистическое определение вероятности.
- Геометрическая вероятность
- Свойства вероятностей Сложение вероятностей несовместимых событий
- Умножение вероятностей
- Сложение вероятностей совместимых событий
- Формула полной вероятности
- Основные формулы комбинаторики
- Дискретные и непрерывные случайные величины. Понятие «случайные величины»
- Закон распределения случайной величины
- Теоретические распределения вероятностей
- Биномиальное распределение
- Распределение Пуассона
- Числовые характеристики дискретных случайных величин
- Нормальное распределение
- Вопросы для самопроверки:
- Раздел II. Основные понятия и термины биологической статистики Генеральная совокупность и выборка
- Непреднамеренный отбор. Метод последовательных номеров. Случайный и механический методы отбора
- Признаки и показатели
- Правила ранжирования
- Способы группировки первичных данных.
- Схемы (модели) научного исследования
- Однофакторная и многофакторная модель Контрольные и экспериментальные группы
- Метод автоконтроля
- Метод дублирования
- Метод последовательного пополнения групп
- Численность контрольных и экспериментальных групп
- Научные гипотезы
- Направленные гипотезы
- Статистические критерии
- Параметрические критерии
- Непараметрические критерии
- Уровни статистической значимости
- 1 Рода.
- Вопросы для самопроверки
- Раздел III. Статистические методы обработки экспериментальных данных
- Проверка гипотезы о законе распределения
- Χ2 Пирсона
- Описательные статистики Концепция сжатия экспериментальных данных
- Показатели центральной тенденции. Средние.
- Медиана
- Персентили
- Показатели изменчивости
- Стандартизованные данные
- Показатели асимметрии и эксцесса
- Эксцесс
- Работа с качественными переменными Количественная оценка результатов эксперимента.
- Вопросы для самопроверки:
- Сравнение двух независимых групп т критерий Стьюдента
- Критерии согласия для дисперсий
- U критерий Маана-Уитни
- Сравнение качественных признаков Критерий χ2
- Сравнение долей
- Точный тест Фишера
- Сравнение более двух независимых групп Однофакторный дисперсионный анализ Фишера
- Критерий Краскела-Уоллиса
- Сравнение двух зависимых групп Парный т критерий Стьюдента
- Парный критерий т – Вилкоксона
- Критерий x2r Фридмана
- Тест Мак-Немара
- Корреляционный анализ
- Вычисление и интерпретация параметров парной линейной корреляции
- Условия применения и ограничения корреляционно анализа
- Вычисление и интерпретация параметров парной линейной корреляции
- Измерение связи количественных признаков
- Измерение связи порядковых признаков
- Измерение связи номинальных признаков
- Относительный риск. Отношение шансов
- Статистическая оценка надежности параметров парной корреляции
- Частная корреляция
- Факторный анализ
- Вопросы для самопроверки:
- Регрессионный анализ
- Метод наименьших квадратов
- Выбор формы функциональной зависимости
- Применение парного линейного уравнения регрессии
- Корреляционно-регрессионные модели (крм) и их применение в анализе и прогнозе.
- Логистическая регрессия
- Анализ динамических изменений Применение метода наименьших квадратов при исследовании тенденции развития
- Анализ циклических изменений
- Метод обычных средних
- Метод корригирования средних
- Метод отношения фактических данных
- Ошибки, допускаемые при количественной характеристике сезонных колебаний
- Кластерный анализ
- Иерархическое дерево
- Меры расстояния
- Правила объединения или связи
- Метод k средних
- Выбор между параметрическими и непараметрическими тестами: легкая ситуация.
- Выбор между параметрическими и непараметрическими тестами: сложные случаи.
- Выбор между параметрическим и непараметрическим тестом: насколько это на самом деле влияет на результат?
- Одно или двухсторонняя p-оценка?
- Парный или непарный тест?
- Тест Фишера или хи-квадрат?
- Регрессия или корреляция?
- Вопросы для самопроверки:
- Раздел IV. Работа с программой easystatistics Общие сведения о программе EasyStatistics
- Создание новой базы данных
- Работа с файлами
- Копирование и вставка данных
- Работа с фильтрами
- Работа с переменными и строками
- Статистические методы Описательные статистики
- Частотный анализ
- Сравнение независимых выборок
- Сравнение связанных выборок
- Дисперсионный анализ
- Корреляционный анализ
- Множественная регрессия
- Проверка типа распределения эмпирических данных
- Вероятностный калькулятор
- Задания для самостоятельной работы с программой
- Список рекомендуемой литературы
- Граничные (критические) значения 2-критерия, соответствующие разным вероятностям допустимой ошибки и разным степеням свободы
- Критические значения коэффициентов корреляции для различных степеней свободы (n - 2) и разных вероятностей допустимых ошибок