Персентили
Персентили - это показатели типа средних по расположению в ряду. Если данные не сгруппированы, они определяются по месту нахождения после того, как все данные будут расположены по восходящей градации по величине изучаемого признака (пятидесятый персентиль известен под именем медианы, в предыдущем примере было показано как он вычисляется). Если данные сгруппированы в равномерно отстоящие друг от друга интервалы, то для получения соответствующих персентилей используется формула:
Pi=LPi+(c/f)*e,
где Lpi - нижняя граница интервала, в котором находится соответствующий персентиль;
с - число случаев, которое требуется прибавить к кумулятивному ряду случаев доперсентильных интервалов, чтобы получить порядковое число персентильного случая;
f - число случаев персентильного интервала;
е - величина персентильного интервала.
В практике обычно пользуются только некоторыми из персентилей: P3, P10, P25, P50, P75, P90, P97. Считается, что если индивидуально наблюдаемый признак находится в границах от Р25 до Р75, то величина его соответствует норме (следовательно, в норму входят 50% всех случаев), если он находится в границах от Р10 до Р25 и от Р75 до Р90, то оценка его соответственно выше или ниже средней (по 15%). Если величина рассматриваемого признака находится в границах от Р3 до Р10 и Р90 до Р97, оценка будет соответственно низкой или высокой (по 7%). В остальных случаях - очень низкая или очень высокая.
Если распределение изучаемого признака отличается от нормального, то при выработке нормативов следует предпочесть метод персентилей.
Имеются следующие данные о истолическом давлении крови у мужчин в возрасте 25-29лет. Необходимо найти персентили P3, P10, P25, P50, P75, P90, P97 и определить интервалы, в границах которых находятся отдельные нормативные группы .
Чтобы выполнить заданную задачу, первоначально находят так называемый начетный ряд (кумулятивные итоги - третий столбец таблицы). Он получается следующим образом, к числу случаев первого интервала прибавляют число случаев второго, к полученному итогу прибавляют число случаев третьего интервала и т.д.
RR в мм. рт. сб. | Число случаев | Куммулятивные суммы |
70-90 | 10 | 10 |
90-110 | 100 | 110 |
110-130 | 400 | 510 |
130-150 | 200 | 710 |
150-170 | 100 | 810 |
170-190 | 70 | 880 |
190-210 | 60 | 940 |
210-230 | 30 | 970 |
230-250 | 20 | 990 |
250-270 | 10 | 1000 |
Затем находим номера соответствующих персентилей по формуле:
/100*Pi, где - сумма всех случаев (в нашем примере 1000), Pi - соответствующий персентиль. По этой формуле номер третьего персентиля будет равен 30=(1000/100)*3, десятого персентиля -100, остальных персентилей соответственно 250, 500, 750, 900, 970.
По куммулятивным суммам определяют, в каком интервале находится каждый из требующихся персентилей. Например, персентиль №30 находится во втором интервале 90-100, №100 - в том же интервале, №250 - в интервале 110-130 и т.д. Затем при помощи формулы 1 находят величины искомых персентилей. В нашем случае: Р3=90+(20/100)*20=94 мм;
Р10=90+(90/100)*20=108 мм; Р25=110+(140/400)*20=117 мм;
Р50=110+(390/400)*20=129.5 мм; Р75=150+(40/100)*20=158 мм;
Р90=190+(20/60)*20=186.67 мм;
Р97=210+(30/30)*20=230 мм;
Следовательно, интервалы нормативов будут следующие:
Персентиль | Р3 | Р10 | Р25 | Р50 | Р75 | Р90 | Р97 |
Давление | 94 | 108 | 117 | 130 | 158 | 187 | 230 |
| Очень низкое. Сильно выраженная гипотония | Низкое. Гипото-ния. | Ниже среднего. Слабо выраженная гипотония. | Средние. Нормальные случаи. | Выше среднего. Слабо выраженная гипертония. | Высокие. Гипертония. | Очень высокие. Сильно выраженная гипертония. |
Следует учитывать, что вырабатывать нормативы следует на большом количестве случаев (100-200 и более). Только тогда имеет смысл вычислять персентили.
Мода
Мода (Mo) представляет собой наиболее часто встречающееся в распределении численностей значение. Если к данным таблицы распределения численностей подобрать теоретическую кривую распределения, то мода равна абсциссе точки, имеющей максимальную для этой кривой ординату.
Например, в следующей выборке: {2, 3, 5, 1, 4, 5, 6, 5, 2} модой будет являться значение 5 (обозначатся следующим образом: Мо = 5). Если массив содержит 2 моды, то распределение называется бимодальным. Таким примером может служить выборка {3, 3, 5, 1, 4, 5, 6, 5, 3}. Здесь Мо1 = 5, а Мо2 = 3.
Бимодальное или полимодальное распределение могут рассматриваться как признак неоднородности выборки. Например, школьный класс образован в результате механического слияния двух разных классов, и показатели мод интеллекта были изначально различны. После слияния в объединенной выборке профиль интеллекта будет иметь 2 моды.
Существует несколько приближенных способов оценки моды. Один из них состоит в том, что гистограмма тем или иным способом аппроксимируется непрерывной кривой, и затем находится абсцисса, соответствующая максимальной ординате. Она и будет приближенно равна моде.
В симметричных распределениях х, Mo, Md совпадают, в умеренно асимметричных распределениях Md находится между х и Мо на расстоянии от х, равном примерно одной третьей расстояния от х до Мо. На этом и построено приведенное ниже эмпирическое соотношение:
Mo = x-3*(x-Md).
- Введение
- Раздел I. Введение в теорию вероятностей
- Понятие о случайном событии
- Классическое определение вероятности
- Относительная частота. Статистическое определение вероятности.
- Геометрическая вероятность
- Свойства вероятностей Сложение вероятностей несовместимых событий
- Умножение вероятностей
- Сложение вероятностей совместимых событий
- Формула полной вероятности
- Основные формулы комбинаторики
- Дискретные и непрерывные случайные величины. Понятие «случайные величины»
- Закон распределения случайной величины
- Теоретические распределения вероятностей
- Биномиальное распределение
- Распределение Пуассона
- Числовые характеристики дискретных случайных величин
- Нормальное распределение
- Вопросы для самопроверки:
- Раздел II. Основные понятия и термины биологической статистики Генеральная совокупность и выборка
- Непреднамеренный отбор. Метод последовательных номеров. Случайный и механический методы отбора
- Признаки и показатели
- Правила ранжирования
- Способы группировки первичных данных.
- Схемы (модели) научного исследования
- Однофакторная и многофакторная модель Контрольные и экспериментальные группы
- Метод автоконтроля
- Метод дублирования
- Метод последовательного пополнения групп
- Численность контрольных и экспериментальных групп
- Научные гипотезы
- Направленные гипотезы
- Статистические критерии
- Параметрические критерии
- Непараметрические критерии
- Уровни статистической значимости
- 1 Рода.
- Вопросы для самопроверки
- Раздел III. Статистические методы обработки экспериментальных данных
- Проверка гипотезы о законе распределения
- Χ2 Пирсона
- Описательные статистики Концепция сжатия экспериментальных данных
- Показатели центральной тенденции. Средние.
- Медиана
- Персентили
- Показатели изменчивости
- Стандартизованные данные
- Показатели асимметрии и эксцесса
- Эксцесс
- Работа с качественными переменными Количественная оценка результатов эксперимента.
- Вопросы для самопроверки:
- Сравнение двух независимых групп т критерий Стьюдента
- Критерии согласия для дисперсий
- U критерий Маана-Уитни
- Сравнение качественных признаков Критерий χ2
- Сравнение долей
- Точный тест Фишера
- Сравнение более двух независимых групп Однофакторный дисперсионный анализ Фишера
- Критерий Краскела-Уоллиса
- Сравнение двух зависимых групп Парный т критерий Стьюдента
- Парный критерий т – Вилкоксона
- Критерий x2r Фридмана
- Тест Мак-Немара
- Корреляционный анализ
- Вычисление и интерпретация параметров парной линейной корреляции
- Условия применения и ограничения корреляционно анализа
- Вычисление и интерпретация параметров парной линейной корреляции
- Измерение связи количественных признаков
- Измерение связи порядковых признаков
- Измерение связи номинальных признаков
- Относительный риск. Отношение шансов
- Статистическая оценка надежности параметров парной корреляции
- Частная корреляция
- Факторный анализ
- Вопросы для самопроверки:
- Регрессионный анализ
- Метод наименьших квадратов
- Выбор формы функциональной зависимости
- Применение парного линейного уравнения регрессии
- Корреляционно-регрессионные модели (крм) и их применение в анализе и прогнозе.
- Логистическая регрессия
- Анализ динамических изменений Применение метода наименьших квадратов при исследовании тенденции развития
- Анализ циклических изменений
- Метод обычных средних
- Метод корригирования средних
- Метод отношения фактических данных
- Ошибки, допускаемые при количественной характеристике сезонных колебаний
- Кластерный анализ
- Иерархическое дерево
- Меры расстояния
- Правила объединения или связи
- Метод k средних
- Выбор между параметрическими и непараметрическими тестами: легкая ситуация.
- Выбор между параметрическими и непараметрическими тестами: сложные случаи.
- Выбор между параметрическим и непараметрическим тестом: насколько это на самом деле влияет на результат?
- Одно или двухсторонняя p-оценка?
- Парный или непарный тест?
- Тест Фишера или хи-квадрат?
- Регрессия или корреляция?
- Вопросы для самопроверки:
- Раздел IV. Работа с программой easystatistics Общие сведения о программе EasyStatistics
- Создание новой базы данных
- Работа с файлами
- Копирование и вставка данных
- Работа с фильтрами
- Работа с переменными и строками
- Статистические методы Описательные статистики
- Частотный анализ
- Сравнение независимых выборок
- Сравнение связанных выборок
- Дисперсионный анализ
- Корреляционный анализ
- Множественная регрессия
- Проверка типа распределения эмпирических данных
- Вероятностный калькулятор
- Задания для самостоятельной работы с программой
- Список рекомендуемой литературы
- Граничные (критические) значения 2-критерия, соответствующие разным вероятностям допустимой ошибки и разным степеням свободы
- Критические значения коэффициентов корреляции для различных степеней свободы (n - 2) и разных вероятностей допустимых ошибок