Вопросы для самопроверки:
Участники жеребьевки тянут из ящика жетоны с номерами от 1 до 100. Найти вероятность того, что номер первого наудачу извлеченного жетона не содержит цифры 5.
При стрельбе по мишени вероятность сделать отличный выстрел равна 0,3, а вероятность выстрела на оценку «хорошо» равна 0,4. Какова вероятность получить за сделанный выстрел оценку не ниже «хорошо»?
Вероятность того, что лицо умрет на 71-м году жизни, равна 0,04. Какова вероятность того, что человек не умрет на 71-м году?
В урне 30 шаров: 15 белых, 10 красных и 5 синих. Какова вероятность вынуть цветной шар, если вынимается один шар?
В урне 3 белых и 3 черных шара. Из урны дважды вынимают по одному шару, не возвращая их обратно. Найти вероятность появления белого шара при втором испытании, если при первом испытании был извлечен черный шар.
В колоде 36 карт. Наудачу вынимаются из колоды 2 карты. Определить вероятность того, что вторым вынут туз, если первым тоже вынут туз.
Пусть существует две лотереи: 5 из 36 и 31 из 36. Где вероятность выиграть больше?
Два стрелка стреляют по цели. Вероятность поражения цели первым стрелком при одном выстреле равна 0,8, вторым стрелком — 0,7. Найти вероятность поражения цели двумя пулями в одном залпе.
Студент М может заболеть гриппом (событие А) только в результате либо переохлаждения (событие В), либо контакта с другим больным (событие С). Требуется найти Р (А), если Р (В) = 0,5, Р (С) = 0,5, Рв (А) = 0,3, Рс (А) = 0,1 при условии несовместимости В и С.
Слово «керамит» составлено из букв разрезной азбуки. Затем карточки с буквами перемешиваются, и из них извлекаются по очереди четыре карточки. Какова вероятность, что эти четыре карточки в порядке выхода составят слово «река»?
Вероятность получения желаемого результата в каждом опыте одинакова и равна 0,2. Опыты проводятся последовательно до получения желаемого результата. Определить вероятность того, что придется проводить пятый опыт.
В ящике лежат 10 черных носков и 6 зеленых, все одного размера. Вы, не глядя, вытащили 3 носка, какова вероятность того, что образовалась хотя бы одна пара ?
13. Найти дисперсию и математическое ожидание дискретной случайной величины X, заданной законом распределения:
а)
X | 4,3 | 5,1 | 10,6 |
p | 0,2 | 0,3 | 0,5 |
б)
X | 131 | 140 | 160 | 180 |
p | 0,05 | 0,1 | 0,25 | 0,6 |
В супе объемом 10л плавает 50 перчинок. С какой вероятностью в ложку объемом 0.01л попадет 1 перчинка.
К случайной величине прибавили постоянную а. Как при этом изменятся ее а) математическое ожидание; б) дисперсия?
Пусть вес пойманной рыбы подчиняется нормальному закону с параметрами: μ = 375 г, σ2= 25 г. Найти вероятность того, что вес пойманной рыбы будет от 300 до 425 г.
Диаметр детали, изготовленной цехом, является случайной величиной, распределенной по нормальному закону. Дисперсия ее равна 0,0001, а математическое ожидание — 2,5 см. Найти границы, в которых с вероятностью 0,9973 заключен диаметр наудачу взятой детали.
Принимая вероятности рождения мальчика и девочки одинаковыми, найти вероятность того, что среди 4 новорожденных 2 мальчика.
Производится 10 независимых испытаний, в каждом из которых вероятность появления события А равна 0,6. Найти дисперсию случайной величины X — числа появлений события А в этих испытаниях.
- Введение
- Раздел I. Введение в теорию вероятностей
- Понятие о случайном событии
- Классическое определение вероятности
- Относительная частота. Статистическое определение вероятности.
- Геометрическая вероятность
- Свойства вероятностей Сложение вероятностей несовместимых событий
- Умножение вероятностей
- Сложение вероятностей совместимых событий
- Формула полной вероятности
- Основные формулы комбинаторики
- Дискретные и непрерывные случайные величины. Понятие «случайные величины»
- Закон распределения случайной величины
- Теоретические распределения вероятностей
- Биномиальное распределение
- Распределение Пуассона
- Числовые характеристики дискретных случайных величин
- Нормальное распределение
- Вопросы для самопроверки:
- Раздел II. Основные понятия и термины биологической статистики Генеральная совокупность и выборка
- Непреднамеренный отбор. Метод последовательных номеров. Случайный и механический методы отбора
- Признаки и показатели
- Правила ранжирования
- Способы группировки первичных данных.
- Схемы (модели) научного исследования
- Однофакторная и многофакторная модель Контрольные и экспериментальные группы
- Метод автоконтроля
- Метод дублирования
- Метод последовательного пополнения групп
- Численность контрольных и экспериментальных групп
- Научные гипотезы
- Направленные гипотезы
- Статистические критерии
- Параметрические критерии
- Непараметрические критерии
- Уровни статистической значимости
- 1 Рода.
- Вопросы для самопроверки
- Раздел III. Статистические методы обработки экспериментальных данных
- Проверка гипотезы о законе распределения
- Χ2 Пирсона
- Описательные статистики Концепция сжатия экспериментальных данных
- Показатели центральной тенденции. Средние.
- Медиана
- Персентили
- Показатели изменчивости
- Стандартизованные данные
- Показатели асимметрии и эксцесса
- Эксцесс
- Работа с качественными переменными Количественная оценка результатов эксперимента.
- Вопросы для самопроверки:
- Сравнение двух независимых групп т критерий Стьюдента
- Критерии согласия для дисперсий
- U критерий Маана-Уитни
- Сравнение качественных признаков Критерий χ2
- Сравнение долей
- Точный тест Фишера
- Сравнение более двух независимых групп Однофакторный дисперсионный анализ Фишера
- Критерий Краскела-Уоллиса
- Сравнение двух зависимых групп Парный т критерий Стьюдента
- Парный критерий т – Вилкоксона
- Критерий x2r Фридмана
- Тест Мак-Немара
- Корреляционный анализ
- Вычисление и интерпретация параметров парной линейной корреляции
- Условия применения и ограничения корреляционно анализа
- Вычисление и интерпретация параметров парной линейной корреляции
- Измерение связи количественных признаков
- Измерение связи порядковых признаков
- Измерение связи номинальных признаков
- Относительный риск. Отношение шансов
- Статистическая оценка надежности параметров парной корреляции
- Частная корреляция
- Факторный анализ
- Вопросы для самопроверки:
- Регрессионный анализ
- Метод наименьших квадратов
- Выбор формы функциональной зависимости
- Применение парного линейного уравнения регрессии
- Корреляционно-регрессионные модели (крм) и их применение в анализе и прогнозе.
- Логистическая регрессия
- Анализ динамических изменений Применение метода наименьших квадратов при исследовании тенденции развития
- Анализ циклических изменений
- Метод обычных средних
- Метод корригирования средних
- Метод отношения фактических данных
- Ошибки, допускаемые при количественной характеристике сезонных колебаний
- Кластерный анализ
- Иерархическое дерево
- Меры расстояния
- Правила объединения или связи
- Метод k средних
- Выбор между параметрическими и непараметрическими тестами: легкая ситуация.
- Выбор между параметрическими и непараметрическими тестами: сложные случаи.
- Выбор между параметрическим и непараметрическим тестом: насколько это на самом деле влияет на результат?
- Одно или двухсторонняя p-оценка?
- Парный или непарный тест?
- Тест Фишера или хи-квадрат?
- Регрессия или корреляция?
- Вопросы для самопроверки:
- Раздел IV. Работа с программой easystatistics Общие сведения о программе EasyStatistics
- Создание новой базы данных
- Работа с файлами
- Копирование и вставка данных
- Работа с фильтрами
- Работа с переменными и строками
- Статистические методы Описательные статистики
- Частотный анализ
- Сравнение независимых выборок
- Сравнение связанных выборок
- Дисперсионный анализ
- Корреляционный анализ
- Множественная регрессия
- Проверка типа распределения эмпирических данных
- Вероятностный калькулятор
- Задания для самостоятельной работы с программой
- Список рекомендуемой литературы
- Граничные (критические) значения 2-критерия, соответствующие разным вероятностям допустимой ошибки и разным степеням свободы
- Критические значения коэффициентов корреляции для различных степеней свободы (n - 2) и разных вероятностей допустимых ошибок